Solvability of a regularized boundary-value problem for the system of equations of dynamics of mixtures of viscous compressible heat-conducting fluids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 300-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary–value problem for the system of nonlinear partial differential equations which arise in the analysis of stationary motions of mixtures of viscous compressible heat–conducting fluids in a bounded domain of three–dimensional space. We prove the existence of strong solutions to the regularized boundary value problem.
Keywords: existence theorem, stationary boundary value problem, viscous compressible heat–conducting fluid, multi–velocity mixture.
@article{SEMR_2020_17_a84,
     author = {D. A. Prokudin},
     title = {Solvability of a regularized boundary-value problem for the system of equations of dynamics of mixtures of viscous compressible heat-conducting fluids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {300--312},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a84/}
}
TY  - JOUR
AU  - D. A. Prokudin
TI  - Solvability of a regularized boundary-value problem for the system of equations of dynamics of mixtures of viscous compressible heat-conducting fluids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 300
EP  - 312
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a84/
LA  - en
ID  - SEMR_2020_17_a84
ER  - 
%0 Journal Article
%A D. A. Prokudin
%T Solvability of a regularized boundary-value problem for the system of equations of dynamics of mixtures of viscous compressible heat-conducting fluids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 300-312
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a84/
%G en
%F SEMR_2020_17_a84
D. A. Prokudin. Solvability of a regularized boundary-value problem for the system of equations of dynamics of mixtures of viscous compressible heat-conducting fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 300-312. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a84/

[1] E. Feireisl, Dynamics of viscous compressible fluids, Oxford University Press, Oxford, 2004 | MR | Zbl

[2] E. Feireisl, A. Novotny, Singular limits in thermodynamics of viscous fluids, Birkhauser, Basel, 2009 | MR | Zbl

[3] P.B. Mucha, M. Pokorny, “On the steady compressible Navier–Stokes–Fourier system”, Comm. Math. Phys, 288:1 (2009), 349–377 | MR | Zbl

[4] P.B. Mucha, M. Pokorny, “Weak solutions to equations of steady compressible heat conducting fluids”, Math. Models Methods Appl. Sci., 20:5 (2010), 785–813 | MR | Zbl

[5] A.E. Mamontov, D.A. Prokudin, “Viscous compressible multi-fluids: modeling and multi–D existence”, Methods Appl. Anal., 20:2 (2013), 179–196 | MR | Zbl

[6] A.E. Mamontov, D.A. Prokudin, “Viscous compressible homogeneous multi–fluids with multiple velocities: barotropic existence theory”, Sib. Electron. Math. Izv., 14 (2017), 388–397 | MR | Zbl

[7] A. Novotny, I. Straskraba, Introduction to the mathematical theory of compressible flow, Oxford University Press, Oxford, 2004 | MR | Zbl

[8] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 | MR | Zbl

[9] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | MR | Zbl

[10] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer–Verlag, Berlin, 1983 | MR | Zbl

[11] M.E. Bogovskii, “The solution of some problems of vector analysis related to the operators ${\rm div}$ and ${\rm grad}$”, Trudy sem. S.L. Soboleva, 1, 1980, 5–40 | MR | Zbl