Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a84, author = {D. A. Prokudin}, title = {Solvability of a regularized boundary-value problem for the system of equations of dynamics of mixtures of viscous compressible heat-conducting fluids}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {300--312}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a84/} }
TY - JOUR AU - D. A. Prokudin TI - Solvability of a regularized boundary-value problem for the system of equations of dynamics of mixtures of viscous compressible heat-conducting fluids JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 300 EP - 312 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a84/ LA - en ID - SEMR_2020_17_a84 ER -
%0 Journal Article %A D. A. Prokudin %T Solvability of a regularized boundary-value problem for the system of equations of dynamics of mixtures of viscous compressible heat-conducting fluids %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 300-312 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a84/ %G en %F SEMR_2020_17_a84
D. A. Prokudin. Solvability of a regularized boundary-value problem for the system of equations of dynamics of mixtures of viscous compressible heat-conducting fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 300-312. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a84/
[1] E. Feireisl, Dynamics of viscous compressible fluids, Oxford University Press, Oxford, 2004 | MR | Zbl
[2] E. Feireisl, A. Novotny, Singular limits in thermodynamics of viscous fluids, Birkhauser, Basel, 2009 | MR | Zbl
[3] P.B. Mucha, M. Pokorny, “On the steady compressible Navier–Stokes–Fourier system”, Comm. Math. Phys, 288:1 (2009), 349–377 | MR | Zbl
[4] P.B. Mucha, M. Pokorny, “Weak solutions to equations of steady compressible heat conducting fluids”, Math. Models Methods Appl. Sci., 20:5 (2010), 785–813 | MR | Zbl
[5] A.E. Mamontov, D.A. Prokudin, “Viscous compressible multi-fluids: modeling and multi–D existence”, Methods Appl. Anal., 20:2 (2013), 179–196 | MR | Zbl
[6] A.E. Mamontov, D.A. Prokudin, “Viscous compressible homogeneous multi–fluids with multiple velocities: barotropic existence theory”, Sib. Electron. Math. Izv., 14 (2017), 388–397 | MR | Zbl
[7] A. Novotny, I. Straskraba, Introduction to the mathematical theory of compressible flow, Oxford University Press, Oxford, 2004 | MR | Zbl
[8] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 | MR | Zbl
[9] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | MR | Zbl
[10] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer–Verlag, Berlin, 1983 | MR | Zbl
[11] M.E. Bogovskii, “The solution of some problems of vector analysis related to the operators ${\rm div}$ and ${\rm grad}$”, Trudy sem. S.L. Soboleva, 1, 1980, 5–40 | MR | Zbl