Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a81, author = {A. K. Urinov and K. T. Karimov}, title = {Nonlocal boundary value problems for a three-dimensional elliptic equation with singular coefficients in a semi-infinite parallelepiped}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {161--178}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a81/} }
TY - JOUR AU - A. K. Urinov AU - K. T. Karimov TI - Nonlocal boundary value problems for a three-dimensional elliptic equation with singular coefficients in a semi-infinite parallelepiped JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 161 EP - 178 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a81/ LA - ru ID - SEMR_2020_17_a81 ER -
%0 Journal Article %A A. K. Urinov %A K. T. Karimov %T Nonlocal boundary value problems for a three-dimensional elliptic equation with singular coefficients in a semi-infinite parallelepiped %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 161-178 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a81/ %G ru %F SEMR_2020_17_a81
A. K. Urinov; K. T. Karimov. Nonlocal boundary value problems for a three-dimensional elliptic equation with singular coefficients in a semi-infinite parallelepiped. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 161-178. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a81/
[1] A.M. Nahushev, Equations of Mathematical Biology, Visshaya shkola, M., 1995 | Zbl
[2] A.A. Guetter, “A free boundary problem in plasma containment”, SIAM J. Appl. Math., 49:1 (1989), 99–115 | MR | Zbl
[3] C.V. Pao, “Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions”, J. Math. Anal. Appl., 195:3 (1995), 702–718 | MR | Zbl
[4] E. Obolashvili, “Nonlocal problems for some partial differential equations”, Appl. Anal., 45:1–4 (1992), 269–280 | MR | Zbl
[5] J.I. Diaz, J.M. Rakotoson, “On a nonlocal stationary free boundary problem arising in the confinement of a plasma in a Stellarator geometry”, Arch. Ration. Mech. Anal., 134:1 (1996), 53–95 | MR | Zbl
[6] F.I. Frankl, “Flowing profiles by a stream of subsonic velocity with a supersonic zone ending with a direct surge of seal”, Prikl. Mat. Mekh., 20:2 (1956), 196–202 | MR | Zbl
[7] N.I. Ionkin, “Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition”, Differ. Equations, 13 (1977), 204–211 | MR | Zbl
[8] N.N.I. Ionkin, “On the sustainability of one problem theory of thermal conductivity with a non-classical edge condition”, Differ. Uravn., 15:7 (1979), 1279–1283 | MR | Zbl
[9] N.I. Ionkin, E.I. Moiseev, “About the task for the equation of thermal conductivity with two-point edge conditions”, Differ. Uravn., 15:7 (1979), 1284–1295 | MR | Zbl
[10] M.E. Lerner, O. A. Repin, “On Frankl type problems for some elliptic equations with degeneration of various kinds”, Differ. Equ., 35:8 (1999), 1098–1104 | MR | Zbl
[11] M.E. Lerner, O.A. Repin, “Nonlocal boundary value problems in a vertical half-strip for a generalized axisymmetric Helmholtz Equation”, Differ. Equ., 37:11 (2001), 1562–1564 | MR | Zbl
[12] E.I. Moiseev, “On the solution of a nonlocal boundary value problem by the spectral method”, Differ. Equ., 35:8 (1999), 1105–1112 | MR | Zbl
[13] E.I. Moiseev, “Solvability of a nonlocal boundary value problem”, Differ. Equ., 37:11 (2001), 1643–1646 | MR | Zbl
[14] Yu.K. Sabitova, “Nonlocal initial-boundary-value problems for a degenerate hyperbolic equation”, Russ. Math., 53:12 (2009), 41–49 | MR | Zbl
[15] A.A. Abashkin, “A nonlocal problem for mixed type equation with singular coefficient in domain with half-strip as hyperbolic part”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 36:3 (2014), 7–20 | Zbl
[16] A.N. Tikhonov, A.A. Samarskiy, Equations of Mathematical Physics, Nauka, M. 1972 | MR | Zbl
[17] V.A. Il'in, “On the unconditional basis property for systems of eigenfunctions and associated functions of a second-order differential operator on a closed interval”, Sov. Math., Dokl., 28 (1983), 743–747 | Zbl
[18] V.A. Il'in, “On the absolute and uniform convergence of expansions in eigenfunctions and associated functions of a nonselfadjoint elliptic operator”, Sov. Math., Dokl., 29 (1984), 10–13 | Zbl
[19] Englewood Cliffs, N.J., 1965 | MR | Zbl
[20] Mir, M., 1986 | MR | MR | Zbl
[21] A.K. Urinov, K.T. Karimov, “The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 21:4 (2017), 665–683 | MR | Zbl
[22] G.P. Tolstov, Fourier Series, Nauka, M. 1980 | MR | Zbl