Nonlocal boundary value problems for a three-dimensional elliptic equation with singular coefficients in a semi-infinite parallelepiped
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 161-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

The investigated two nonlocal problems for an elliptic equation with two singular coefficients in a semi-infinite parallelepiped. The proof of the uniqueness of the solution and its construction is carried out by the method of spectral analysis. The solution to the problem is constructed as the sum of the biorthogonal series. In substantiating the uniform convergence of the constructed series, we used asymptotic estimates of the Bessel functions of the real and imaginary argument. Based on them, estimates are obtained for each member of the series, which made it possible to prove the convergence of the resulting series and its derivatives to the second order inclusive, as well as the existence theorem in the class of regular solutions.
Mots-clés : equations of elliptic type, singular coefficient, biorthogonal series
Keywords: nonlocal problem, spectral method, semi-infinite parallelepiped.
@article{SEMR_2020_17_a81,
     author = {A. K. Urinov and K. T. Karimov},
     title = {Nonlocal boundary value problems for a three-dimensional elliptic equation with singular coefficients in a semi-infinite parallelepiped},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {161--178},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a81/}
}
TY  - JOUR
AU  - A. K. Urinov
AU  - K. T. Karimov
TI  - Nonlocal boundary value problems for a three-dimensional elliptic equation with singular coefficients in a semi-infinite parallelepiped
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 161
EP  - 178
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a81/
LA  - ru
ID  - SEMR_2020_17_a81
ER  - 
%0 Journal Article
%A A. K. Urinov
%A K. T. Karimov
%T Nonlocal boundary value problems for a three-dimensional elliptic equation with singular coefficients in a semi-infinite parallelepiped
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 161-178
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a81/
%G ru
%F SEMR_2020_17_a81
A. K. Urinov; K. T. Karimov. Nonlocal boundary value problems for a three-dimensional elliptic equation with singular coefficients in a semi-infinite parallelepiped. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 161-178. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a81/

[1] A.M. Nahushev, Equations of Mathematical Biology, Visshaya shkola, M., 1995 | Zbl

[2] A.A. Guetter, “A free boundary problem in plasma containment”, SIAM J. Appl. Math., 49:1 (1989), 99–115 | MR | Zbl

[3] C.V. Pao, “Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions”, J. Math. Anal. Appl., 195:3 (1995), 702–718 | MR | Zbl

[4] E. Obolashvili, “Nonlocal problems for some partial differential equations”, Appl. Anal., 45:1–4 (1992), 269–280 | MR | Zbl

[5] J.I. Diaz, J.M. Rakotoson, “On a nonlocal stationary free boundary problem arising in the confinement of a plasma in a Stellarator geometry”, Arch. Ration. Mech. Anal., 134:1 (1996), 53–95 | MR | Zbl

[6] F.I. Frankl, “Flowing profiles by a stream of subsonic velocity with a supersonic zone ending with a direct surge of seal”, Prikl. Mat. Mekh., 20:2 (1956), 196–202 | MR | Zbl

[7] N.I. Ionkin, “Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition”, Differ. Equations, 13 (1977), 204–211 | MR | Zbl

[8] N.N.I. Ionkin, “On the sustainability of one problem theory of thermal conductivity with a non-classical edge condition”, Differ. Uravn., 15:7 (1979), 1279–1283 | MR | Zbl

[9] N.I. Ionkin, E.I. Moiseev, “About the task for the equation of thermal conductivity with two-point edge conditions”, Differ. Uravn., 15:7 (1979), 1284–1295 | MR | Zbl

[10] M.E. Lerner, O. A. Repin, “On Frankl type problems for some elliptic equations with degeneration of various kinds”, Differ. Equ., 35:8 (1999), 1098–1104 | MR | Zbl

[11] M.E. Lerner, O.A. Repin, “Nonlocal boundary value problems in a vertical half-strip for a generalized axisymmetric Helmholtz Equation”, Differ. Equ., 37:11 (2001), 1562–1564 | MR | Zbl

[12] E.I. Moiseev, “On the solution of a nonlocal boundary value problem by the spectral method”, Differ. Equ., 35:8 (1999), 1105–1112 | MR | Zbl

[13] E.I. Moiseev, “Solvability of a nonlocal boundary value problem”, Differ. Equ., 37:11 (2001), 1643–1646 | MR | Zbl

[14] Yu.K. Sabitova, “Nonlocal initial-boundary-value problems for a degenerate hyperbolic equation”, Russ. Math., 53:12 (2009), 41–49 | MR | Zbl

[15] A.A. Abashkin, “A nonlocal problem for mixed type equation with singular coefficient in domain with half-strip as hyperbolic part”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 36:3 (2014), 7–20 | Zbl

[16] A.N. Tikhonov, A.A. Samarskiy, Equations of Mathematical Physics, Nauka, M. 1972 | MR | Zbl

[17] V.A. Il'in, “On the unconditional basis property for systems of eigenfunctions and associated functions of a second-order differential operator on a closed interval”, Sov. Math., Dokl., 28 (1983), 743–747 | Zbl

[18] V.A. Il'in, “On the absolute and uniform convergence of expansions in eigenfunctions and associated functions of a nonselfadjoint elliptic operator”, Sov. Math., Dokl., 29 (1984), 10–13 | Zbl

[19] Englewood Cliffs, N.J., 1965 | MR | Zbl

[20] Mir, M., 1986 | MR | MR | Zbl

[21] A.K. Urinov, K.T. Karimov, “The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 21:4 (2017), 665–683 | MR | Zbl

[22] G.P. Tolstov, Fourier Series, Nauka, M. 1980 | MR | Zbl