Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a80, author = {I. V. Frankina}, title = {On the equilibrium problem for a two-layer structure with the upper layer covering a defect tip}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {141--160}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a80/} }
TY - JOUR AU - I. V. Frankina TI - On the equilibrium problem for a two-layer structure with the upper layer covering a defect tip JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 141 EP - 160 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a80/ LA - ru ID - SEMR_2020_17_a80 ER -
I. V. Frankina. On the equilibrium problem for a two-layer structure with the upper layer covering a defect tip. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 141-160. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a80/
[1] A.M. Khludnev, “On modeling elastic bodies with defects”, Sib. Electron. Math. Izv., 15 (2018), 153–166 | MR | Zbl
[2] A.M. Khludnev, “On thin inclusions in elastic bodies with defects”, Z. Angew. Math. Phys., 70:45 (2019) | MR | Zbl
[3] A.M. Khludnev, “On thin Timoshenko inclusions in elastic bodies with defects”, Arch. Appl. Mech., 89:8 (2019), 1691–1704 | DOI | MR
[4] A.M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010
[5] T.S. Popova, “Contact problem for two viscoelastic plates”, Mat. Notes YaGU, 12:2 (2005), 60–92
[6] N.V. Neustroeva, “Rigid inclusion in the contact problem for elastic plates”, J. Appl. Ind. Math., 4:4 (2010), 526–538 | DOI | MR | Zbl
[7] T.A. Rotanova, “On formulation and solvability of problems on the contact of two plates with rigid inclusions”, Sib. Zh. Ind. Mat., 15:2 (2012), 107–118 | MR | Zbl
[8] D. Knees, A. Schroder, “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints”, Math. Methods Appl. Sci., 35:15 (2012), 1859–1884 | DOI | MR | Zbl
[9] L. Freddi, T. Roubicek, C. Zanini, “Quasistatic delamination of sandwich-like Kirchhoff-Love plates”, J. Elasticity, 113:2 (2013), 219–250 | DOI | MR | Zbl
[10] V.A. Kovtunenko, G. Leugering, “A shape-topological control problem for nonlinear crack-defect interaction: the antiplane variational model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl
[11] S. Almi, “Energy release rate and quasi-static evolution via vanishing viscosity in a fracture model depending on the crack opening”, ESAIM, Control Optim. Calc. Var., 23:3 (2017), 791–826 | DOI | MR | Zbl
[12] A. Chambolle, S. Conti, G. Francfort, “Approximation of a brittle fracture energy with a constraint of non-interpenetration”, Arch. Ration. Mech. Anal., 228:3 (2018), 867–889 | DOI | MR | Zbl
[13] A.M. Khludnev, “On crack problem with overlapping domain”, Z. Angew. Math. Mech., 88:8 (2008), 650–660 | DOI | MR | Zbl
[14] A.M. Khludnev, A. Tani, “Overlapping domain problems in the crack theory with possible contact between crack faces”, Q. Appl. Math., 66:3 (2008), 423–435 | DOI | MR | Zbl
[15] M.P. Savruk, V.S. Kravets, “Influence of reinforcement pads on distribution stress in cracked plates”, Prikl. Mech., 29:3 (1993), 48–55
[16] A. Yu. Zemlyanova, V.V. Sil'vestrov, “A problem on reinforcement of a plate with a cut by a two-dimensional covering strap”, J. Appl. Math. Mech., 71:1 (2007), 40–51 | DOI | MR | Zbl
[17] Yu.O. Vasil'eva, V.V. Sil'vestrov, “The problem of an interface crack with a rigid patch plate on part of its edge”, J. Appl. Math. Mech., 75:6 (2011), 716–730 | DOI | MR | Zbl
[18] A. Gaudiello, A.M. Khludnev, “Crack on the boundary of two overlapping domains”, Z. Angew. Math. Phys., 61:2 (2010), 341–356 | DOI | MR | Zbl
[19] A.M. Khludnev, G.R. Leugering, “Optimal control of cracks in elastic bodies with thin rigid inclusion”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl
[20] A.M. Khludnev, “On the equilibrium of a two-layer elastic body with a crack”, J. Appl. Ind. Math., 7:3 (2013), 370–379 | DOI | MR | Zbl
[21] E.V. Pyatkina, “Optimal control of the layer size in the problem of equilibrium of elastic bodies with overlapping domains”, J. Appl. Ind. Math., 10:3 (2016), 435–443 | DOI | MR | Zbl
[22] E.V. Pyatkina, “On control problem for two-layers elastic body with a crack”, J. Math. Sci., 230:1 (2018), 159–166 | DOI | MR
[23] E.M. Rudoy, N.A. Kazarinov, V. Yu. Slesarenko, “Numerical simulation of the equilibrium of an elastic two-layer structure with a through crack”, Numer. Anal. Appl., 10:1 (2017), 63–73 | DOI | MR
[24] G.P. Cherepanov, Mechanics of Brittle Fracture, Nauka, M., 1974 | MR
[25] V.Z. Parton, E.M. Morozov, Mechanics of elastic-plastic fracture, Hemisphere Publishing Corp., Washington, DC, 1989 | MR | Zbl
[26] E. M. Rudoy, “Differentiation of energy functionals in two-dimensional elasticity theory for solids with curvilinear cracks”, J. Appl. Mech. Tech. Phys., 45:6 (2004), 843–852 | DOI | MR | Zbl
[27] N.P. Lazarev, “The Griffith formula for a Timoshenko-type plate with a curvilinear track”, Sib. Zh. Ind. Mat., 16:2 (2013), 98–108 | MR | Zbl
[28] V. Shcherbakov, “Energy release rates for interfacial cracks in elastic bodies with thin semirigid inclusions”, Z. Angew. Math. Phys., 68:26 (2017) | MR | Zbl
[29] N. P. Lazarev, S. Das, M. P. Grigoryev, “Optimal control of a thin rigid stiffener for a model describing equilibrium of a Timoshenko plate with a crack”, Sib. Elektron. Mat. Izv., 15 (2018), 1485–1497 | DOI | MR | Zbl
[30] V.P. Mikhailov, Partial Differential Equations, Nauka, M., 1976 | MR
[31] R. Temam, Mathematical Problems of Plasticity Theory, Nauka, M., 1991 | MR | Zbl