Semirings of skew Laurent polynomials
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 521-533.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers semirings of skew polynomials and semirings of skew Laurent polynomials with rigid endomorphism. It is shown that the semiring $S$ is $\varphi$-rigid if and only if the semiring of skew Laurent polynomials $S[x^{-1},x,\varphi]$ is a semiring without nilpotent elements. The concept of the $\varphi$-arm-semiring is introduced. It is proved that if $S$ is a $\varphi$-arm-semiring, then $S$ is Baer (left Rickart) exactly when $S[x^{-1},x,\varphi]$ is a Baer (resp. left Rickart) semiring.
Keywords: skew polynomial semiring, skew Laurent polynomial semiring, Armendariz semiring, Baer semiring, Rickart semiring.
Mots-clés : rigid endomorphism
@article{SEMR_2020_17_a8,
     author = {D. A. Maslyaev and V. V. Chermnykh},
     title = {Semirings of skew {Laurent} polynomials},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {521--533},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a8/}
}
TY  - JOUR
AU  - D. A. Maslyaev
AU  - V. V. Chermnykh
TI  - Semirings of skew Laurent polynomials
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 521
EP  - 533
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a8/
LA  - ru
ID  - SEMR_2020_17_a8
ER  - 
%0 Journal Article
%A D. A. Maslyaev
%A V. V. Chermnykh
%T Semirings of skew Laurent polynomials
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 521-533
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a8/
%G ru
%F SEMR_2020_17_a8
D. A. Maslyaev; V. V. Chermnykh. Semirings of skew Laurent polynomials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 521-533. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a8/

[1] J. Krempa, “Some examples of reduced rings”, Algebra Colloq., 3:4 (1996), 289–300 | MR | Zbl

[2] C.Y. Hong, N.K. Kim, T.K. Kwak, “On skew Armendariz ring”, Comm. Algebra, 31:1 (2003), 103–122 | DOI | MR | Zbl

[3] A.R. Nasr-Isfahani, A. Moussavi, “Skew Laurent polynomial extensions of Baer and P. P.-rings”, Bull. Korean Math. Soc., 46:6 (2009), 1041–1050 | DOI | MR | Zbl

[4] J.A. Matczuk, “Characterzation of $\sigma$-rigid rings”, Comm. Algebra, 32:11 (2004), 4333–4336 | DOI | MR | Zbl

[5] A.S. Kuz'mina, “On Armendariz and skew Armendariz rings”, Vestnik Barnaulskogo gosudarstvennogo universiteta, 5:1 (2005), 13–19 | MR

[6] E.P. Armendariz, “A note on extension of Baer and P. P.–rings”, J. Aust. Math. Soc.,, 18 (1974), 470–473 | DOI | MR | Zbl

[7] M.B. Rege, S. Chhawachharia, “Armendariz rings”, Proc. Japan Acad. Ser. A, 73:1 (1997), 14–17 | DOI | MR | Zbl

[8] E.M. Vechtomov, E.N. Lubyagina, V.V. Chermnykh, Elements of semiring theory, Raduga-Press, Kirov, 2012

[9] D.A. Jordan, “Bijective extensions of injective ring endomorphisms”, J. Lond. Math. Soc. II, 25:3 (1982), 435–448 | DOI | MR | Zbl

[10] R.V. Markov, V.V. Chermnykh, “Semirings close to regular and their Pierce stalks”, Tr. Inst. Mat. Mekh., 21:3 (2015), 213–221 | MR

[11] V.V. Chermnykh, “Functional representations of semirings”, J. Math. Sci., New York, 187:2 (2012), 187–267 | DOI | MR | Zbl