Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a78, author = {A. G. Eliseev and P. V. Kirichenko}, title = {A solution of the singularly perturbed {Cauchy} problem in the presence of a <<weak>> turning point at the limit operator}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {51--60}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/} }
TY - JOUR AU - A. G. Eliseev AU - P. V. Kirichenko TI - A solution of the singularly perturbed Cauchy problem in the presence of a <> turning point at the limit operator JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 51 EP - 60 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/ LA - ru ID - SEMR_2020_17_a78 ER -
%0 Journal Article %A A. G. Eliseev %A P. V. Kirichenko %T A solution of the singularly perturbed Cauchy problem in the presence of a <> turning point at the limit operator %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 51-60 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/ %G ru %F SEMR_2020_17_a78
A. G. Eliseev; P. V. Kirichenko. A solution of the singularly perturbed Cauchy problem in the presence of a <> turning point at the limit operator. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 51-60. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/
[1] S.A. Lomov, Introducdion to the General Theory of Singular Perturbations, Nauka, M., 1981 | MR | Zbl
[2] A.G. Eliseev, S.A. Lomov, “Theory of singular perturbations in the case of spectral singularities of the limit operator”, Math. USSR, Sb., 59:2 (1988), 541–555 | DOI | MR | Zbl
[3] A.A. Bobodzhanov, V.F. Safonov, “Regulized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels”, Ufa Math. J., 10:2 (2018), 3–-13 | DOI | MR
[4] V.V. Kucherenko, “Asymptotics of solutions of the system $A(x,-ih\frac{\partial}{\partial x})$ as $h\rightarrow 0$ in the case of characteristics of variable multiplicity”, Math. USSR, Izv., 8:3 (1974), 631–-666 | DOI | MR | Zbl
[5] A.G. Eliseev, T.A. Salnikova, “Construction of a solution to the Cauchy problem in the case of a weak turning point of the limit operator”, Matem. metody i prilojeniya, Trudy 20 matem. chtenii RGSU, 2011, 46–52
[6] V.V. Voevodin, Vychislitel’nye osnovy linejnoj algebry, Nauka, M., 1977 | Zbl