Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a78, author = {A. G. Eliseev and P. V. Kirichenko}, title = {A solution of the singularly perturbed {Cauchy} problem in the presence of a <<weak>> turning point at the limit operator}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {51--60}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/} }
TY - JOUR AU - A. G. Eliseev AU - P. V. Kirichenko TI - A solution of the singularly perturbed Cauchy problem in the presence of a <> turning point at the limit operator JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 51 EP - 60 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/ LA - ru ID - SEMR_2020_17_a78 ER -
%0 Journal Article %A A. G. Eliseev %A P. V. Kirichenko %T A solution of the singularly perturbed Cauchy problem in the presence of a <> turning point at the limit operator %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 51-60 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/ %G ru %F SEMR_2020_17_a78
A. G. Eliseev; P. V. Kirichenko. A solution of the singularly perturbed Cauchy problem in the presence of a <> turning point at the limit operator. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 51-60. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/