A solution of the singularly perturbed Cauchy problem in the presence of a > turning point at the limit operator
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 51-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a method for constructing an asymptotic solution of the singularly perturbed Cauchy problem in the case of violation of the stability conditions of the spectrum of the limit operator. In particular, we consider the problem with a turning point where eigenvalues "stick together" at $t=0$.
Keywords: singularly perturbed Cauchy problem, turning point, regularization method.
@article{SEMR_2020_17_a78,
     author = {A. G. Eliseev and P. V. Kirichenko},
     title = {A solution of the singularly perturbed {Cauchy} problem in the presence of a <<weak>> turning point at the limit operator},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/}
}
TY  - JOUR
AU  - A. G. Eliseev
AU  - P. V. Kirichenko
TI  - A solution of the singularly perturbed Cauchy problem in the presence of a <> turning point at the limit operator
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 51
EP  - 60
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/
LA  - ru
ID  - SEMR_2020_17_a78
ER  - 
%0 Journal Article
%A A. G. Eliseev
%A P. V. Kirichenko
%T A solution of the singularly perturbed Cauchy problem in the presence of a <> turning point at the limit operator
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 51-60
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/
%G ru
%F SEMR_2020_17_a78
A. G. Eliseev; P. V. Kirichenko. A solution of the singularly perturbed Cauchy problem in the presence of a <> turning point at the limit operator. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 51-60. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a78/

[1] S.A. Lomov, Introducdion to the General Theory of Singular Perturbations, Nauka, M., 1981 | MR | Zbl

[2] A.G. Eliseev, S.A. Lomov, “Theory of singular perturbations in the case of spectral singularities of the limit operator”, Math. USSR, Sb., 59:2 (1988), 541–555 | DOI | MR | Zbl

[3] A.A. Bobodzhanov, V.F. Safonov, “Regulized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels”, Ufa Math. J., 10:2 (2018), 3–-13 | DOI | MR

[4] V.V. Kucherenko, “Asymptotics of solutions of the system $A(x,-ih\frac{\partial}{\partial x})$ as $h\rightarrow 0$ in the case of characteristics of variable multiplicity”, Math. USSR, Izv., 8:3 (1974), 631–-666 | DOI | MR | Zbl

[5] A.G. Eliseev, T.A. Salnikova, “Construction of a solution to the Cauchy problem in the case of a weak turning point of the limit operator”, Matem. metody i prilojeniya, Trudy 20 matem. chtenii RGSU, 2011, 46–52

[6] V.V. Voevodin, Vychislitel’nye osnovy linejnoj algebry, Nauka, M., 1977 | Zbl