Soft 3-stars in sparse plane graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1863-1868

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider plane graphs with large enough girth $g$, minimum degree $\delta$ at least 2 and no $(k+1)$-paths consisting of vertices of degree 2, where $k\ge1$. In 2016, Hudák, Maceková, Madaras, and Široczki studied the case $k=1$, which means that no two 2-vertices are adjacent, and proved, in particular, that there is a 3-vertex whose all three neighbors have degree 2 (called a soft 3-star), provided that $g\ge10$, which bound on $g$ is sharp. For the first open case $k=2$ it was known that a soft 3-star exists if $g\ge14$ but may not exist if $g\le12$. In this paper, we settle the case $k=2$ by presenting a construction with $g=13$ and no soft 3-star. For all $k\ge3$, we prove that soft 3-stars exist if $g\ge4k+6$ but, as follows from our construction, possibly not exist if $g\le3k+7$. We conjecture that in fact soft 3-stars exist whenever $g\ge3k+8$.
Keywords: plane graph, structure properties, girth, tight description, weight, height, 3-star, soft 3-star.
@article{SEMR_2020_17_a76,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {Soft 3-stars in sparse plane graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1863--1868},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a76/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - Soft 3-stars in sparse plane graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1863
EP  - 1868
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a76/
LA  - ru
ID  - SEMR_2020_17_a76
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T Soft 3-stars in sparse plane graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1863-1868
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a76/
%G ru
%F SEMR_2020_17_a76
O. V. Borodin; A. O. Ivanova. Soft 3-stars in sparse plane graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1863-1868. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a76/