An extension of Franklin's Theorem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1516-1521

Voir la notice de l'article provenant de la source Math-Net.Ru

Back in 1922, Franklin proved that every $3$-polytope with minimum degree $5$ has a $5$-vertex adjacent to two vertices of degree at most $6$, which is tight. This result has been extended and refined in several directions. It is well-known that each $3$-polytope has a vertex of degree at most $5$, called minor vertex. A $3$-path $uvw$ is an $(i,j,k)$-path if $d(u)\le i$, $d(v)\le j$, and $d(w)\le k$, where $d(x)$ is the degree of a vertex $x$. A $3$-path is minor $3$-path if its central vertex is minor. The purpose of this note is to extend Franklin' Theorem to the $3$-polytopes with minimum degree at least $4$ by proving that there exist precisely the following ten tight descriptions of minor $3$-paths:$\{(6,5,6),(4,4,9),(6,4,8),(7,4,7)\}$, $\{(6,5,6),(4,4,9),(7,4,8)\}$, $\{(6,5,6),(6,4,9),(7,4,7)\}$, $\{(6,5,6),(7,4,9)\}$, $\{(6,5,8),(4,4,9),(7,4,7)\}$,$\{(6,5,9),(7,4,7)\}$, $\{(7,5,7),(4,4,9),(6,4,8)\}$, $\{(7,5,7),(6,4,9)\}$,$\{(7,5,8),(4,4,9)\}$, and $\{(7,5,9)\}$.
Keywords: planar graph, plane map, $3$-polytope, structure properties, tight description, path, weight.
@article{SEMR_2020_17_a75,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {An extension of {Franklin's} {Theorem}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1516--1521},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a75/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - An extension of Franklin's Theorem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1516
EP  - 1521
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a75/
LA  - en
ID  - SEMR_2020_17_a75
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T An extension of Franklin's Theorem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1516-1521
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a75/
%G en
%F SEMR_2020_17_a75
O. V. Borodin; A. O. Ivanova. An extension of Franklin's Theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1516-1521. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a75/