Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a74, author = {I. Yu. Mogilnykh and F. I. Solov'eva}, title = {Coordinate transitivity of a class of extended perfect codes and their {SQS}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1451--1462}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a74/} }
TY - JOUR AU - I. Yu. Mogilnykh AU - F. I. Solov'eva TI - Coordinate transitivity of a class of extended perfect codes and their SQS JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1451 EP - 1462 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a74/ LA - en ID - SEMR_2020_17_a74 ER -
%0 Journal Article %A I. Yu. Mogilnykh %A F. I. Solov'eva %T Coordinate transitivity of a class of extended perfect codes and their SQS %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1451-1462 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a74/ %G en %F SEMR_2020_17_a74
I. Yu. Mogilnykh; F. I. Solov'eva. Coordinate transitivity of a class of extended perfect codes and their SQS. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1451-1462. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a74/
[1] J. Borges, I. Yu. Mogilnykh, J. Rifà, F. I. Solov'eva, “Structural properties of binary propelinear codes”, Advances in Mathematics of Communication, 6 (2012), 329–346 | DOI | MR | Zbl
[2] C. Carlet, P. Charpin, V. A. Zinoviev, “Codes, bent functions and permutations suitable for DES-like cryptosystems”, Designs, Codes and Cryptography, 15 (1998), 125–156 | DOI | MR | Zbl
[3] P. Charpin, Handbook of Coding Theory, Chapter 11, North Holland, 1998 | Zbl
[4] E. Grigorescu, T. Kaufman, “Explicit low-weight bases for BCH codes”, IEEE Transactions on Information Theory, 58 (2011), 78–81 | DOI | MR | Zbl
[5] N. I. Gillespie, C. E. Praeger, “New characterisations of the Nordstrom–Robinson codes”, Bulletin of the London Mathematical Society, 58 (2017), 320–330 | DOI | MR | Zbl
[6] N. I. Gillespie, C. E. Praeger, “Neighbour transitivity on codes in Hamming graphs”, Designs, Codes and Cryptography, 67 (2013), 385–393 | DOI | MR | Zbl
[7] N. I. Gillespie, M. Giudici, D. R. Hawtin, C. E. Praeger, “Entry-faithful 2-neighbour transitive codes”, Designs, Codes and Cryptography, 79 (2016), 549–564 | DOI | MR | Zbl
[8] A. R. Hammons, Jr, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sol$\acute{e}$, “The Z4-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Transactions on Information Theory, 40:2 (1994), 301–319 | DOI | MR | Zbl
[9] W. Kantor, “On the inequivalence of generalized Preparata codes”, IEEE Transactions on Information Theory, 29:2 (1983), 345–348 | DOI | MR | Zbl
[10] D. S. Krotov, “Z4-linear Hadamard and extended perfect codes”, WCC2001, International Workshop on Coding and Cryptography, Electronic Notes in Discrete Mathematics, 6, 2001, 107–112 | DOI | MR | Zbl
[11] T. Kaufman, S. Litsyn, “Almost orthogonal linear codes are locally testable”, FOCS, IEEE Computer Society, 2005, 317–326 | Zbl
[12] D. S. Krotov, “On the automorphism groups of the Z2Z4-linear 1-perfect and Preparata-like codes”, Designs, Codes and Cryptography, 83:1 (2017), 169–177 | DOI | MR | Zbl
[13] C. C. Lindner, A. Rosa, “Steiner quadruple systems – a survey”, Discrete Mathematics, 22:2 (1978), 147–181 | DOI | MR | Zbl
[14] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, 1977 | MR | Zbl
[15] I. Yu. Mogilnykh, F. I. Solov'eva, “Propelinear codes related to some classes of optimal codes”, Problems of Information Transmission, 53:3 (2017), 251–259 | DOI | MR | Zbl
[16] I. Yu. Mogilnykh, F.I. Solov'eva, “On explicit minimum weight bases for extended cyclic codes related to Gold functions”, Designs, Codes and Cryptography, 86:11 (2018), 2619–2627 | DOI | MR | Zbl
[17] I. Yu. Mogilnykh, F. I. Solov'eva, “A concatenation construction for propelinear perfect codes from regular subgroups of GA(r,2)”, Siberian Electronic Mathematical Reports, 16 (2019), 1689–1702 | MR | Zbl
[18] I. Yu. Mogilnykh, F. I. Solov'eva, “On the symmetry group of the Mollard code”, Problems of Information Transmission, 52 (2016), 265–275 | DOI | MR | Zbl
[19] M. Mollard, “A generalized parity function and its use in the construction of perfect codes”, SIAM J. Alg. Discrete Math., 7:1 (1986), 113–115 | DOI | MR | Zbl
[20] K. T. Phelps, J. Rifà, “On binary 1-perfect additive codes: some structural properties”, IEEE Transactions on Information Theory, 48 (2002), 2587–2592 | DOI | MR | Zbl
[21] P. Solé, “Completely regular codes and completely transitive codes”, Discrete Mathematics, 81 (1990), 193–201 | DOI | MR | Zbl
[22] F. I. Solov'eva, “On binary nongroup codes”, Methody Discretnogo Analiza, 37 (1981), 65–75 (in Russian) | Zbl
[23] F. I. Solov'eva, “On construction of transitive codes”, Problems of Information Transmission, 41:3 (2005), 23–31 | MR | Zbl