Coordinate transitivity of a class of extended perfect codes and their SQS
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1451-1462.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of the class of binary extended perfect propelinear codes constructed in the previous paper and consider their permutation automorphism (symmetry) groups and Steiner quadruple systems. We show that the automorphism group of the SQS of any such code coincides with the permutation automorphism group of the code. In particular, the isomorphism classes of these SQS's are complete invariants for the isomorphism classes of these codes. We obtain a criterion for the point transitivity of the automorphism group of SQS of proposed codes in terms of $\mathrm{GL}$-equivalence (similar to EA-type equivalence for permutations of $F^r$). Based on these results we suggest a new construction for coordinate transitive and neighbor transitive extended perfect codes.
Keywords: extended perfect code, concatenation construction, neighbor transitive code, transitive action, regular subgroup, isomorphism problem, transitive Steiner quadruple system, coordinate transitive code.
Mots-clés : transitive code
@article{SEMR_2020_17_a74,
     author = {I. Yu. Mogilnykh and F. I. Solov'eva},
     title = {Coordinate transitivity of a class of extended perfect codes and their {SQS}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1451--1462},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a74/}
}
TY  - JOUR
AU  - I. Yu. Mogilnykh
AU  - F. I. Solov'eva
TI  - Coordinate transitivity of a class of extended perfect codes and their SQS
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1451
EP  - 1462
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a74/
LA  - en
ID  - SEMR_2020_17_a74
ER  - 
%0 Journal Article
%A I. Yu. Mogilnykh
%A F. I. Solov'eva
%T Coordinate transitivity of a class of extended perfect codes and their SQS
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1451-1462
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a74/
%G en
%F SEMR_2020_17_a74
I. Yu. Mogilnykh; F. I. Solov'eva. Coordinate transitivity of a class of extended perfect codes and their SQS. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1451-1462. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a74/

[1] J. Borges, I. Yu. Mogilnykh, J. Rifà, F. I. Solov'eva, “Structural properties of binary propelinear codes”, Advances in Mathematics of Communication, 6 (2012), 329–346 | DOI | MR | Zbl

[2] C. Carlet, P. Charpin, V. A. Zinoviev, “Codes, bent functions and permutations suitable for DES-like cryptosystems”, Designs, Codes and Cryptography, 15 (1998), 125–156 | DOI | MR | Zbl

[3] P. Charpin, Handbook of Coding Theory, Chapter 11, North Holland, 1998 | Zbl

[4] E. Grigorescu, T. Kaufman, “Explicit low-weight bases for BCH codes”, IEEE Transactions on Information Theory, 58 (2011), 78–81 | DOI | MR | Zbl

[5] N. I. Gillespie, C. E. Praeger, “New characterisations of the Nordstrom–Robinson codes”, Bulletin of the London Mathematical Society, 58 (2017), 320–330 | DOI | MR | Zbl

[6] N. I. Gillespie, C. E. Praeger, “Neighbour transitivity on codes in Hamming graphs”, Designs, Codes and Cryptography, 67 (2013), 385–393 | DOI | MR | Zbl

[7] N. I. Gillespie, M. Giudici, D. R. Hawtin, C. E. Praeger, “Entry-faithful 2-neighbour transitive codes”, Designs, Codes and Cryptography, 79 (2016), 549–564 | DOI | MR | Zbl

[8] A. R. Hammons, Jr, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sol$\acute{e}$, “The Z4-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Transactions on Information Theory, 40:2 (1994), 301–319 | DOI | MR | Zbl

[9] W. Kantor, “On the inequivalence of generalized Preparata codes”, IEEE Transactions on Information Theory, 29:2 (1983), 345–348 | DOI | MR | Zbl

[10] D. S. Krotov, “Z4-linear Hadamard and extended perfect codes”, WCC2001, International Workshop on Coding and Cryptography, Electronic Notes in Discrete Mathematics, 6, 2001, 107–112 | DOI | MR | Zbl

[11] T. Kaufman, S. Litsyn, “Almost orthogonal linear codes are locally testable”, FOCS, IEEE Computer Society, 2005, 317–326 | Zbl

[12] D. S. Krotov, “On the automorphism groups of the Z2Z4-linear 1-perfect and Preparata-like codes”, Designs, Codes and Cryptography, 83:1 (2017), 169–177 | DOI | MR | Zbl

[13] C. C. Lindner, A. Rosa, “Steiner quadruple systems – a survey”, Discrete Mathematics, 22:2 (1978), 147–181 | DOI | MR | Zbl

[14] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, 1977 | MR | Zbl

[15] I. Yu. Mogilnykh, F. I. Solov'eva, “Propelinear codes related to some classes of optimal codes”, Problems of Information Transmission, 53:3 (2017), 251–259 | DOI | MR | Zbl

[16] I. Yu. Mogilnykh, F.I. Solov'eva, “On explicit minimum weight bases for extended cyclic codes related to Gold functions”, Designs, Codes and Cryptography, 86:11 (2018), 2619–2627 | DOI | MR | Zbl

[17] I. Yu. Mogilnykh, F. I. Solov'eva, “A concatenation construction for propelinear perfect codes from regular subgroups of GA(r,2)”, Siberian Electronic Mathematical Reports, 16 (2019), 1689–1702 | MR | Zbl

[18] I. Yu. Mogilnykh, F. I. Solov'eva, “On the symmetry group of the Mollard code”, Problems of Information Transmission, 52 (2016), 265–275 | DOI | MR | Zbl

[19] M. Mollard, “A generalized parity function and its use in the construction of perfect codes”, SIAM J. Alg. Discrete Math., 7:1 (1986), 113–115 | DOI | MR | Zbl

[20] K. T. Phelps, J. Rifà, “On binary 1-perfect additive codes: some structural properties”, IEEE Transactions on Information Theory, 48 (2002), 2587–2592 | DOI | MR | Zbl

[21] P. Solé, “Completely regular codes and completely transitive codes”, Discrete Mathematics, 81 (1990), 193–201 | DOI | MR | Zbl

[22] F. I. Solov'eva, “On binary nongroup codes”, Methody Discretnogo Analiza, 37 (1981), 65–75 (in Russian) | Zbl

[23] F. I. Solov'eva, “On construction of transitive codes”, Problems of Information Transmission, 41:3 (2005), 23–31 | MR | Zbl