The nonexistence small $Q$-polynomial graphs of type (III)
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1270-1279.

Voir la notice de l'article provenant de la source Math-Net.Ru

I.N. Belousov, A.A. Makhnev and M.S. Nirova found the description of $Q$-polynomial distance-regular graphs $\Gamma$ of diameter 3 such that $\Gamma_2$ and $\Gamma_3$ are strongly regular. Such graph has intersection array $\{t(c_2+1)+a_3,tc_2,a_3+1;1,c_2,t(c_2+1)\}$ and $(c_2+1)=a_3(a_3+1)/(t^2-a_3-1)$. $Q$-polynomial graph $\Gamma$ is the graph of type (I), if $a_3$ is devided by $c_2+1$, graph of type (II), if $a_3+1$ is devided by $c_2+1$, graph of type (III), if $a_3$ and $a_3+1$ does not devided by $c_2+1$. In this paper it is proved that graph of type (III) with $t\le 6$ has intersection array $\{14,10,3;1,5,12\}$, $\{69,56,10;1,14,60\}$, $\{74,54,15;1, 9,60\}$, $\{87,66,16;1,11,72\}$, $\{119,100,15;1,20,105\}$ or $\{188,162,21;1, 27,168\}$. Further it is proved that graphs of type (III) with intersection array $\{14,10,3;1,5,12\}$, $\{87,66,16;1,11,72\}$ and $\{188,162,21;1,27,168\}$ do not exist.
Keywords: distance-regular graph, triple intersection numbers.
Mots-clés : $Q$-polynomial graph
@article{SEMR_2020_17_a73,
     author = {A. A. Makhnev and M. M. Isakova and A. A. Tokbaeva},
     title = {The nonexistence small $Q$-polynomial graphs of type {(III)}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1270--1279},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a73/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. M. Isakova
AU  - A. A. Tokbaeva
TI  - The nonexistence small $Q$-polynomial graphs of type (III)
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1270
EP  - 1279
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a73/
LA  - ru
ID  - SEMR_2020_17_a73
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. M. Isakova
%A A. A. Tokbaeva
%T The nonexistence small $Q$-polynomial graphs of type (III)
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1270-1279
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a73/
%G ru
%F SEMR_2020_17_a73
A. A. Makhnev; M. M. Isakova; A. A. Tokbaeva. The nonexistence small $Q$-polynomial graphs of type (III). Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1270-1279. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a73/

[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin etc, 1989 | MR | Zbl

[2] A. Jurishich, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI | MR | Zbl

[3] M.S. Nirova, “On distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Sib. Electron. Math. Izv., 15 (2018), 175–185 | MR | Zbl

[4] I.N. Belousov, A.A. Makhnev, M.S. Nirova, “On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Sib. Electron. Math. Izv., 16 (2019), 1385–1392 | DOI | MR | Zbl

[5] A.A. Makhnev, M.M. Isakova, M.S. Nirova, “Distance-regular graphs with intersection arrays $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist”, Sib. Electron. Math. Izv., 16 (2019), 1254–1259 | DOI | MR | Zbl

[6] K. Coolsaet, A. Jurishich, “Using equality in the Krein conditions to prove nonexistence of sertain distance-regular graphs”, J. Comb. Theory, Ser. A, 115:6 (2008), 1086–1095 | DOI | MR | Zbl

[7] J. Vidali, jaanos/sage-drg: sage-drg Sage package v0.8, , 2018 https://github.com/jaanos/sage-drg/ | DOI