Perfect packing of $d$-cubes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 853-864.

Voir la notice de l'article provenant de la source Math-Net.Ru

A packing of $d$-cubes into a $d$-box of the right area is called perfect packing. Since $\sum\limits_{i =1}^\infty {1/ i^{dt}}={\zeta(dt)}$, it can be asked for which $t$ can be found a perfect packing of the $d$-cubes of edge lengths $1$, $2^{-t}$, $3^{-t}$, $\ldots$ into a $d$-box of the right area. In this paper an algorithm will be presented which packs the $d$-cubes of edge lengths $1$, $2^{-t}$, $3^{-t}$, $\ldots$ into a $d$-box of area $\zeta(dt)$ for any $t$ on the interval $[d_0,{2^{d-1}/( d2^{d-1}-1)}]$, where $d_0$ depends on $d$ only.
Keywords: packing, $d$-cube, tiling.
@article{SEMR_2020_17_a70,
     author = {A. Jo\'os},
     title = {Perfect packing of $d$-cubes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {853--864},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a70/}
}
TY  - JOUR
AU  - A. Joós
TI  - Perfect packing of $d$-cubes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 853
EP  - 864
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a70/
LA  - en
ID  - SEMR_2020_17_a70
ER  - 
%0 Journal Article
%A A. Joós
%T Perfect packing of $d$-cubes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 853-864
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a70/
%G en
%F SEMR_2020_17_a70
A. Joós. Perfect packing of $d$-cubes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 853-864. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a70/

[1] B. Altunkaynak, An algebraic approach to rectangle packing Problems, 2004, arXiv: abs/math/0403194

[2] V. Bálint, “A packing problem and the geometrical series”, Proc. of 4th Czechoslov. Symp. on Combinatorics, Graphs and Complexity (Prachatice, 1990), Ann. Discrete Math., 51, 1992, 17–21 | DOI | MR | Zbl

[3] V. Bálint, “Two packing problems”, Discrete Math., 178:1-3 (1998), 233–236 | DOI | MR | Zbl

[4] K. Ball, “On packing unequal squares”, J. Combin. Theory Ser. A, 75:2 (1996), 353–357 | DOI | MR | Zbl

[5] V. Boju, L. Funar, The Math Problems Notebook, Birkhäuser, Basel, 2007 | MR | Zbl

[6] P. Brass, W.O.J. Moser, J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005 | MR | Zbl

[7] A. Chalcraft, “Perfect square packings”, J. Combin. Theory, Ser. A, 92:2 (2000), 158–172 | DOI | MR | Zbl

[8] H.T. Croft, K.J. Falconer, R.K. Guy, Unsolved Problems in Geometry, Springer, New York etc, 1991 | MR | Zbl

[9] P. Grzegorek, J. Januszewski, “A note on three Moser's problems and two Paulhus' lemmas”, J. Comb. Theory, Ser. A, 162 (2019), 222–230 | DOI | MR | Zbl

[10] D. Jennings, “On packing unequal rectangles in the unit square”, J. Combin. Theory, Ser. A, 68:2 (1994), 465–469 | DOI | MR | Zbl

[11] D. Jennings, “On packings of squares and rectangles”, Discrete Math., 138:1-3 (1995), 293–300 | DOI | MR | Zbl

[12] A. Joós, “On packing of rectangles in a rectangle”, Discrete Math., 341:9 (2018), 2544–2552 | DOI | MR | Zbl

[13] A. Joós, “Perfect packing of cubes”, Acta Math. Hung., 156:2 (2018), 375–384 | DOI | MR | Zbl

[14] A. Joós, V. Bálint, “Packing of odd squares revisited”, J. Geom., 110:1 (2019), 10 | DOI | MR | Zbl

[15] Z. Liu, On continuity properties for infinite rectangle packing, 2017, arXiv: 1705.02443

[16] G. Martin, “Compactness theorems for geometric packings”, J. Combin. Theory Ser. A, 97:2 (2002), 225–238 | DOI | MR | Zbl

[17] A. Meir, L. Moser, “On packing of squares and cubes”, J. Combin. Theory, 5 (1968), 126–134 | DOI | MR | Zbl

[18] M.M. Paulhus, “An algorithm for packing squares”, J. Combin. Theory Ser. A, 82:2 (1998), 147–157 | DOI | MR | Zbl

[19] J. Wästlund, “Perfect packings of squares using the stack-pack strategy”, Discrete Comput. Geom., 29:4 (2003), 625–631 | DOI | MR | Zbl