Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a69, author = {A. N. Glebov and I. A. Pavlov and K. A. Khadaev}, title = {Vertex colourings of multigraphs with forbiddances on edges}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {637--646}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a69/} }
TY - JOUR AU - A. N. Glebov AU - I. A. Pavlov AU - K. A. Khadaev TI - Vertex colourings of multigraphs with forbiddances on edges JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 637 EP - 646 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a69/ LA - ru ID - SEMR_2020_17_a69 ER -
A. N. Glebov; I. A. Pavlov; K. A. Khadaev. Vertex colourings of multigraphs with forbiddances on edges. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 637-646. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a69/
[1] P. Erdos, A.L. Rubin, H. Taylor, “Choosability in graphs” (Arcata, 1979), Congressus Numerantium, 26, Proc. West Coast Conference on Combinatorics, Graph Theory and Computing (1979), 125–157 | MR
[2] T. Feder, P. Hell, J. Huang, “Brooks Type Theorems for Pair-List Colourings and List Homomorphisms”, SIAM J. Discrete Math., 22 (2008), 1–14 | DOI | MR | Zbl
[3] F. Galvin, “The list chromatic index of a bipartite multigraph”, Journal of Combinatorial Theory, Series B, 63 (1995), 153–158 | DOI | MR | Zbl
[4] J. Kahn, “Asymptotics of the list chromatic index for multigraphs”, Random Structures Algorithms, 17:2 (2000), 117–156 | 3.0.CO;2-9 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] C. Thomassen, “Every planar graph is 5-choosable”, Journal of Combinatorial Theory, Series B, 62 (1994), 180–181 | DOI | MR | Zbl
[6] V.G. Vizing, “Colouring vertices of a graph with prescribd colours”, Sborn. nauchn. trudov, Metody diskretnogo analiza v teorii kodov i shem, 29, Sobolev institute of mathematics, Novosibirsk, 1976, 3–10 | MR