Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a66, author = {A. N. Glebov}, title = {Colouring planar graphs with bounded monochromatic components}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {513--520}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a66/} }
A. N. Glebov. Colouring planar graphs with bounded monochromatic components. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 513-520. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a66/
[1] N. Alon, G. Ding, B. Oporowski, D. Vertigan, “Partitioning into graphs with only small components”, J. Comb. Theory, Ser. B, 87:2 (2003), 231–243 | DOI | MR | Zbl
[2] K. Appel, W. Haken, “Every planar map is four colorable. Part I: Discharging”, Ill. J. Math., 21:3 (1977), 429–490 | DOI | MR | Zbl
[3] K. Appel, W. Haken, “Every planar map is four colorable. Part II: Reducibility”, Ill. J. Math., 21:3 (1977), 491–567 | DOI | MR | Zbl
[4] M. Axenovich, T. Ueckerdt, P. Weiner, “Splitting planar graphs of girth 6 into two linear forests with short paths”, J. Graph Theory, 85:3 (2017), 601–618 | DOI | MR | Zbl
[5] O.V. Borodin, A.O. Ivanova, “List strong linear 2-arboricity of sparse graphs”, J. Graph Theory, 67:2 (2011), 83–90 | DOI | MR | Zbl
[6] O.V. Borodin, A.O. Ivanova, M. Montassier, P. Ochem, A. Raspaud, “Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most $k$”, J. Graph Theory, 65:2 (2010), 83–93 | DOI | MR | Zbl
[7] O.V. Borodin, A.V. Kostochka, “Defective 2-colorings of sparse graphs”, J. Comb. Theory, Ser. B, 104:1 (2014), 72–80 | DOI | MR | Zbl
[8] O.V. Borodin, A. Kostochka, M. Yancey, “On 1-improper 2-coloring of sparse graphs”, Discrete Mathematics, 313:22 (2013), 2638–2649 | DOI | MR | Zbl
[9] G. Chartrand, D.P. Geller, S. Hedetniemi, “Graphs with forbidden subgraphs”, J. Comb. Theory, Ser. B, 10:1 (1971), 12–41 | DOI | MR | Zbl
[10] I. Choi, L. Esperet, “Improper coloring of graphs on surfaces”, J. Graph Theory, 91:1 (2019), 16–34 | DOI | MR | Zbl
[11] I. Choi, A. Raspaud, “Planar graphs with girth at least 5 are (3,5)-colorable”, Discrete Math., 318:4 (2015), 661–667 | DOI | MR | Zbl
[12] L.J. Cowen, R.H. Cowen, D.R. Woodall, “Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency”, J. Graph Theory, 10:2 (1986), 187–195 | DOI | MR | Zbl
[13] W. Cushing, H.A. Kierstead, “Planar graphs are 1-relaxed, 4-choosable”, Eur. J. Comb., 31:5 (2010), 1385–1397 | DOI | MR | Zbl
[14] Z. Dvořák, S. Norin, Islands in minor-closed classes. I. Bounded treewidth and separators, 2017, arXiv: 1710.02727
[15] H. Jiang, D. Yang, “Decomposing a graph into forests: the nine dragon tree conjecture is true”, Combinatorica, 37:6 (2017), 1125–1137 | DOI | MR | Zbl
[16] A.N. Glebov, “Splitting a planar graph of girth 5 into two forests with trees of small diameter”, Discrete Math., 341:7 (2018), 2058–2067 | DOI | MR | Zbl
[17] A.N. Glebov, D. Zh. Zambalaeva, “Partition of a planar graph with girth 6 into two forests with chain length at most 4”, J. Appl. Ind. Math., 8:3 (2014), 317–328 | DOI | MR | Zbl
[18] H. Grötzsch, “Ein Dreifarbenzatz für dreikreisfreie Netze auf der Kugel”, Math-Natur. Reih., 8 (1959), 109–120 | Zbl
[19] F. Havet, J.-S. Sereni, “Improper choosability of graphs and maximum average degree”, J. Graph Theory, 52:3 (2006), 181–199 | DOI | MR | Zbl
[20] P. Haxell, T. Szabó, G. Tardos, “Bounded size components — partitions and transversals”, J. Comb. Theory, Ser. B, 88:2 (2003), 281–297 | DOI | MR | Zbl
[21] S.-J. Kim, A.V. Kostochka, D.B. West, H. Wu, X. Zhu, “Decomposition of sparse graphs into forests and a graph with bounded degree”, J. Graph Theory, 74:3–4 (2013), 369–391 | DOI | MR | Zbl
[22] J. Kim, A. Kostochka, X. Zhu, “Improper coloring of sparse graphs with a given girth, I: (0,1)-colorings of triangle-free graphs”, Eur. J. Comb., 42:1 (2014), 26–48 | DOI | MR | Zbl
[23] J.M. Kleinberg, R. Motwani, P. Raghavan, S. Venkatasub-Ramanian, “Storage management for evolving databases”, 38th Annual Symposium on Foundations of Computer Science, FOCS'97, IEEE, 1997, 353–362 | DOI
[24] N. Linial, J. Matoušek, O. Sheffet, G. Tardos, “Graph colouring with no large monochromatic components”, Comb. Probab. Comput., 17:4 (2008), 577–589 | DOI | MR | Zbl
[25] M. Montassier, P. Ochem, “Near-colorings: Non-colorable graphs and NP-completeness”, The Electron. J. Comb., 22:1 (2015) | MR | Zbl
[26] M. Montassier, P. Ossona de Mendez, A. Raspaud, X. Zhu, “Decomposing a graph into forests”, J. Comb. Theory, Ser. B, 102:1 (2012), 38–52 | DOI | MR | Zbl
[27] B. Moore, An approximate version of the Strong Nine Dragon Tree Conjecture, 2019, arXiv: 1909.07946
[28] C. St.J.A. Nash-Williams, “Edge-disjoint spanning trees of finite graphs”, J. Lond. Math. Soc., 36:1 (1961), 445–450 | DOI | MR | Zbl
[29] C. St.J.A. Nash-Williams, “Decomposition of finite graphs into forests”, J. Lond. Math. Soc., 39:1 (1964), 12 | DOI | MR | Zbl
[30] K.S. Poh, “On the linear vertex-arboricity of a planar graph”, J. Graph Theory, 14:1 (1990), 73–75 | DOI | MR | Zbl
[31] R. Škrekovski, “List improper colorings of planar graphs with prescribed girth”, Discrete Math., 214:1 (2000), 221–233 | DOI | MR | Zbl
[32] C. Thomassen, “Every planar graph is 5-choosable”, J. Comb. Theory, Ser. B, 62:1 (1994), 180–181 | DOI | MR | Zbl
[33] M. Voigt, “List colourings of planar graphs”, Discrete Math., 120:1–3 (1993), 215–219 | DOI | MR | Zbl
[34] M. Voigt, “A not 3-choosable planar graph without 3-cycles”, Discrete Math., 146:1–3 (1995), 325–328 | DOI | MR | Zbl
[35] D.R. Woodall, “Defective choosability of graphs in surfaces”, Discuss. Math. Graph Theory, 31:3 (2011), 441–459 | DOI | MR | Zbl