All tight descriptions of $3$-paths in plane graphs with girth at least~$8$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 496-501

Voir la notice de l'article provenant de la source Math-Net.Ru

Lebesgue (1940) proved that every plane graph with minimum degree $\delta$ at least 3 and girth $g$ (the length of a shortest cycle) at least $5$ has a path on three vertices ($3$-path) of degree $3$ each. A description is tight if no its parameter can be strengthened, and no triplet dropped. Borodin et al. (2013) gave a tight description of $3$-paths in plane graphs with $\delta\ge3$ and $g\ge3$, and another tight description was given by Borodin, Ivanova and Kostochka in 2017. In 2015, we gave seven tight descriptions of $3$-paths when $\delta\ge3$ and $g\ge4$. Furthermore, we proved that this set of tight descriptions is complete, which was a result of a new type in the structural theory of plane graphs. Also, we characterized (2018) all one-term tight descriptions if $\delta\ge3$ and $g\ge3$. The problem of producing all tight descriptions for $g\ge3$ remains widely open even for $\delta\ge3$. Recently, eleven tight descriptions of $3$-paths were obtained for plane graphs with $\delta=2$ and $g\ge4$ by Jendrol', Maceková, Montassier, and Soták, four of which descriptions are for $g\ge9$. In 2018, Aksenov, Borodin and Ivanova proved nine new tight descriptions of $3$-paths for $\delta=2$ and $g\ge9$ and showed that no other tight descriptions exist. The purpose of this note is to give a complete list of tight descriptions of $3$-paths in the plane graphs with $\delta=2$ and $g\ge8$.
Keywords: Plane graph, structure properties, tight description, $3$-path, minimum degree, height, weight, girth.
@article{SEMR_2020_17_a64,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {All tight descriptions of $3$-paths in plane graphs with girth at least~$8$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {496--501},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a64/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - All tight descriptions of $3$-paths in plane graphs with girth at least~$8$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 496
EP  - 501
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a64/
LA  - en
ID  - SEMR_2020_17_a64
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T All tight descriptions of $3$-paths in plane graphs with girth at least~$8$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 496-501
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a64/
%G en
%F SEMR_2020_17_a64
O. V. Borodin; A. O. Ivanova. All tight descriptions of $3$-paths in plane graphs with girth at least~$8$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 496-501. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a64/