Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a63, author = {L. Yu. Tsiovkina}, title = {Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter $3$ in affine case}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {445--495}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a63/} }
TY - JOUR AU - L. Yu. Tsiovkina TI - Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter $3$ in affine case JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 445 EP - 495 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a63/ LA - ru ID - SEMR_2020_17_a63 ER -
%0 Journal Article %A L. Yu. Tsiovkina %T Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter $3$ in affine case %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 445-495 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a63/ %G ru %F SEMR_2020_17_a63
L. Yu. Tsiovkina. Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter $3$ in affine case. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 445-495. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a63/
[1] M. Aschbacher, Finite Group Theory, second ed., Cambridge University Press, Cambridge, 2000 | MR | Zbl
[2] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc, 1989 | MR | Zbl
[3] A.E. Brouwer, J.H. Koolen, M.H. Klin, “A root graph that is locally the line graph of the Petersen graph”, Discrete Math., 264:1–3 (2003), 13–24 | DOI | MR | Zbl
[4] S.E. Payne, “The generalized quadrangle with $(s;t)=(3;5)$”, Congr. Numerantium, 77 (1990), 5–29 | MR | Zbl
[5] P.J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[6] P.J. Cameron, J.H. van Lint, Designs, graphs, codes and their links, London Math. Soc. Student Texts, 22, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[7] J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[8] C.D. Godsil, R.A. Liebler, C.E. Praeger, “Antipodal distance transitive covers of complete graphs”, Eur. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl
[9] C.D. Godsil, A.D. Hensel, “Distance regular covers of the complete graph”, J. Comb. Theory, Ser. B, 56:2 (1992), 205–238 | DOI | MR | Zbl
[10] B. Huppert, “Zweifach transitive, auflosbare Permutationsgruppen”, Math. Z., 68 (1957), 126–150 | DOI | MR | Zbl
[11] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1967 | MR | Zbl
[12] B. Huppert, N. Blackburn, Finite Groups, v. III, Springer-Verlag, Berlin etc, 1982 | MR | Zbl
[13] W.M. Kantor, A. Seress, “Large element orders and the characteristic of Lie-type simple groups”, J. Algebra, 322:3 (2009), 802–832 | DOI | MR | Zbl
[14] W. Jones, B. Parshall, “On the 1-cohomology of finite groups of Lie type”, Proc. Conf. finite Groups (Park City 1975), 1976, 313–328 | DOI | MR | Zbl
[15] Ch. Hering, “Transitive linear groups and linear groups which contain irreducible subgroups of prime order”, Geom. Dedicata, 2 (1974), 425–460 | DOI | MR | Zbl
[16] J.D. Dixon, B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, 163, Springer, New York, 1996 | DOI | MR | Zbl
[17] D.G. Higman, “Flag-transitive collineation groups of finite projective spaces”, Ill. J. Math., 6 (1962), 434–446 | DOI | MR | Zbl
[18] H. Pollatsek, “First cohomology groups of some linear groups over fields of characteristic two”, Ill. J. Math., 15 (1971), 393–417 | DOI | MR | Zbl
[19] M. Klin, Ch. Pech, “A new construction of antipodal distance-regular covers of complete graphs through the use of Godsil-Hensel matrices”, Ars Math. Contemp., 4:2 (2011), 205–243 | DOI | MR | Zbl
[20] M.W. Liebeck, J. Saxl, “The primitive permutation groups of odd degree”, J. Lond. Math. Soc., II. Ser., 31:2 (1985), 250–264 | DOI | MR | Zbl
[21] W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system. I. The user language”, J. Symb. Comput., 24:3–4 (1997), 235–265 | DOI | MR | Zbl
[22] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964 | MR | Zbl
[23] J. Bray, D. Holt, C. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013 | MR | Zbl
[24] S.H. Alavi, T.C. Burness, “Large subgroups of simple groups”, J. Algebra, 421 (2015), 187–233 | DOI | MR | Zbl
[25] M.W. Liebeck, “On the orders of maximal subgroups of the finite classical groups”, Proc. London Math. Soc., III. Ser., 50 (1985), 426–446 | DOI | MR | Zbl
[26] A. Bereczky, “Maximal overgroups of Singer elements in classical groups”, J. Algebra, 234:1 (2000), 187–206 | DOI | MR | Zbl
[27] R.A. Wilson, The finite simple groups, Grad. Texts in Math., 251, Springer-Verlag, London, 2009 | DOI | MR | Zbl
[28] D.L. Winter, “The automorphism group of an extraspecial $p$-group”, Rocky Mt. J. Math., 2:2 (1972), 159–168 | DOI | MR | Zbl
[29] K.S. Braun, Cohomology of groups, Springer-Verlag, New York, etc, 1982 | MR | Zbl
[30] V.A. Belonogov, Representations and Characters of Finite Groups, Akad. Nauk SSSR Ural. Otdel., Sverdlovsk, 1990 (in Russian) | MR | Zbl
[31] V.D. Mazurov, “Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups”, Algebra Logic, 32:3 (1993), 142–153 | DOI | MR | Zbl
[32] A.V. Vasil'ev, “Minimal permutation representations of finite simple exceptional groups of types $G_2$ i $F_4$”, Algebra Logika, 35:6 (1996), 663–684 | MR | Zbl
[33] A.L. Gavrilyuk, A.A. Makhnev, “Geodesic Graphs with Homogeneity Conditions”, Dokl. Math., 78:2 (2008), 743–745 | DOI | MR | Zbl
[34] A.A. Makhnev, D.V. Paduchikh, L.Yu. Tsiovkina, “Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$”, Proc. Steklov Inst. Math., 284, suppl. 1 (2014), S124–S134 | DOI | MR | Zbl
[35] A.A. Makhnev, D.V. Paduchikh, L. Yu. Tsiovkina, “Edge-symmetric distance-regular coverings of cliques: The affine case”, Sib. Math. J., 54:6 (2013), 1076–1087 | DOI | MR | Zbl
[36] L. Yu. Tsiovkina, “On affine distance-regular covers of complete graphs”, Sib. Elektron. Mat. Izv., 12 (2015), 998–1005 | MR | Zbl