Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter $3$ in affine case
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 445-495.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe pairs $(\Gamma, G)$, where $\Gamma$ is an antipodal distance-regular graph of diameter $3$ that possesses an arc-transitive group of automorphisms $G$ such that $G$ induces an affine $2$-transitive permutation group on the set of its antipodal classes. As a corollary, we revise and specify a list of necessary conditions for existence of such pairs, and find several new additional necessary conditions in one-dimensional subcase.
Keywords: arc-transitive group, distance-regular graph
Mots-clés : antipodal cover, affine $2$-transitive group.
@article{SEMR_2020_17_a63,
     author = {L. Yu. Tsiovkina},
     title = {Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter $3$ in affine case},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {445--495},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a63/}
}
TY  - JOUR
AU  - L. Yu. Tsiovkina
TI  - Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter $3$ in affine case
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 445
EP  - 495
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a63/
LA  - ru
ID  - SEMR_2020_17_a63
ER  - 
%0 Journal Article
%A L. Yu. Tsiovkina
%T Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter $3$ in affine case
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 445-495
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a63/
%G ru
%F SEMR_2020_17_a63
L. Yu. Tsiovkina. Arc-transitive groups of automorphisms of antipodal distance-regular graphs of diameter $3$ in affine case. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 445-495. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a63/

[1] M. Aschbacher, Finite Group Theory, second ed., Cambridge University Press, Cambridge, 2000 | MR | Zbl

[2] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc, 1989 | MR | Zbl

[3] A.E. Brouwer, J.H. Koolen, M.H. Klin, “A root graph that is locally the line graph of the Petersen graph”, Discrete Math., 264:1–3 (2003), 13–24 | DOI | MR | Zbl

[4] S.E. Payne, “The generalized quadrangle with $(s;t)=(3;5)$”, Congr. Numerantium, 77 (1990), 5–29 | MR | Zbl

[5] P.J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[6] P.J. Cameron, J.H. van Lint, Designs, graphs, codes and their links, London Math. Soc. Student Texts, 22, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[7] J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[8] C.D. Godsil, R.A. Liebler, C.E. Praeger, “Antipodal distance transitive covers of complete graphs”, Eur. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl

[9] C.D. Godsil, A.D. Hensel, “Distance regular covers of the complete graph”, J. Comb. Theory, Ser. B, 56:2 (1992), 205–238 | DOI | MR | Zbl

[10] B. Huppert, “Zweifach transitive, auflosbare Permutationsgruppen”, Math. Z., 68 (1957), 126–150 | DOI | MR | Zbl

[11] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1967 | MR | Zbl

[12] B. Huppert, N. Blackburn, Finite Groups, v. III, Springer-Verlag, Berlin etc, 1982 | MR | Zbl

[13] W.M. Kantor, A. Seress, “Large element orders and the characteristic of Lie-type simple groups”, J. Algebra, 322:3 (2009), 802–832 | DOI | MR | Zbl

[14] W. Jones, B. Parshall, “On the 1-cohomology of finite groups of Lie type”, Proc. Conf. finite Groups (Park City 1975), 1976, 313–328 | DOI | MR | Zbl

[15] Ch. Hering, “Transitive linear groups and linear groups which contain irreducible subgroups of prime order”, Geom. Dedicata, 2 (1974), 425–460 | DOI | MR | Zbl

[16] J.D. Dixon, B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, 163, Springer, New York, 1996 | DOI | MR | Zbl

[17] D.G. Higman, “Flag-transitive collineation groups of finite projective spaces”, Ill. J. Math., 6 (1962), 434–446 | DOI | MR | Zbl

[18] H. Pollatsek, “First cohomology groups of some linear groups over fields of characteristic two”, Ill. J. Math., 15 (1971), 393–417 | DOI | MR | Zbl

[19] M. Klin, Ch. Pech, “A new construction of antipodal distance-regular covers of complete graphs through the use of Godsil-Hensel matrices”, Ars Math. Contemp., 4:2 (2011), 205–243 | DOI | MR | Zbl

[20] M.W. Liebeck, J. Saxl, “The primitive permutation groups of odd degree”, J. Lond. Math. Soc., II. Ser., 31:2 (1985), 250–264 | DOI | MR | Zbl

[21] W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system. I. The user language”, J. Symb. Comput., 24:3–4 (1997), 235–265 | DOI | MR | Zbl

[22] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964 | MR | Zbl

[23] J. Bray, D. Holt, C. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013 | MR | Zbl

[24] S.H. Alavi, T.C. Burness, “Large subgroups of simple groups”, J. Algebra, 421 (2015), 187–233 | DOI | MR | Zbl

[25] M.W. Liebeck, “On the orders of maximal subgroups of the finite classical groups”, Proc. London Math. Soc., III. Ser., 50 (1985), 426–446 | DOI | MR | Zbl

[26] A. Bereczky, “Maximal overgroups of Singer elements in classical groups”, J. Algebra, 234:1 (2000), 187–206 | DOI | MR | Zbl

[27] R.A. Wilson, The finite simple groups, Grad. Texts in Math., 251, Springer-Verlag, London, 2009 | DOI | MR | Zbl

[28] D.L. Winter, “The automorphism group of an extraspecial $p$-group”, Rocky Mt. J. Math., 2:2 (1972), 159–168 | DOI | MR | Zbl

[29] K.S. Braun, Cohomology of groups, Springer-Verlag, New York, etc, 1982 | MR | Zbl

[30] V.A. Belonogov, Representations and Characters of Finite Groups, Akad. Nauk SSSR Ural. Otdel., Sverdlovsk, 1990 (in Russian) | MR | Zbl

[31] V.D. Mazurov, “Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups”, Algebra Logic, 32:3 (1993), 142–153 | DOI | MR | Zbl

[32] A.V. Vasil'ev, “Minimal permutation representations of finite simple exceptional groups of types $G_2$ i $F_4$”, Algebra Logika, 35:6 (1996), 663–684 | MR | Zbl

[33] A.L. Gavrilyuk, A.A. Makhnev, “Geodesic Graphs with Homogeneity Conditions”, Dokl. Math., 78:2 (2008), 743–745 | DOI | MR | Zbl

[34] A.A. Makhnev, D.V. Paduchikh, L.Yu. Tsiovkina, “Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$”, Proc. Steklov Inst. Math., 284, suppl. 1 (2014), S124–S134 | DOI | MR | Zbl

[35] A.A. Makhnev, D.V. Paduchikh, L. Yu. Tsiovkina, “Edge-symmetric distance-regular coverings of cliques: The affine case”, Sib. Math. J., 54:6 (2013), 1076–1087 | DOI | MR | Zbl

[36] L. Yu. Tsiovkina, “On affine distance-regular covers of complete graphs”, Sib. Elektron. Mat. Izv., 12 (2015), 998–1005 | MR | Zbl