Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a62, author = {V. A. Baransky and T. A. Senchonok}, title = {On maximal graphical partitions that are the nearest to a given graphical partition}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {338--363}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a62/} }
TY - JOUR AU - V. A. Baransky AU - T. A. Senchonok TI - On maximal graphical partitions that are the nearest to a given graphical partition JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 338 EP - 363 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a62/ LA - ru ID - SEMR_2020_17_a62 ER -
%0 Journal Article %A V. A. Baransky %A T. A. Senchonok %T On maximal graphical partitions that are the nearest to a given graphical partition %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 338-363 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a62/ %G ru %F SEMR_2020_17_a62
V. A. Baransky; T. A. Senchonok. On maximal graphical partitions that are the nearest to a given graphical partition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 338-363. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a62/
[1] M.O. Asanov, V.A. Baransky, V.V. Rasin, Diskretnaya matematika: grafy, matroidy, algoritmy, Lan', SPb, 2010 (In Russian) | MR
[2] G.E. Andrews, The theory of partitions, Cambridge University Press, Cambridge, 1976 | MR | Zbl
[3] V.A. Baransky, T.A. Koroleva, “The lattice of partitions of a positive integer”, Dokl. Math., 77:1 (2008), 72–75 | MR | Zbl
[4] V.A. Baransky, T.A. Koroleva, T.A. Senchonok, “O reshetke razbieniy natural'nogo chisla”, Tr. Inst. Mat. Mekh., 21, no. 3, 2015, 30–36 | MR
[5] V.A. Baransky, T.A. Koroleva, T.A. Senchonok, “On the partition lattice of all integers”, Sib. Electron. Mat. Izv., 13 (2016), 744–753 | MR | Zbl
[6] T. Brylawski, “The lattice of integer partitions”, Discrete Math., 6 (1973), 210–219 | MR | Zbl
[7] V.A. Baransky, T.I. Nadymova, T.A. Senchonok, “A new algorithm generating graphical sequences”, Sib. Electron. Mat. Izv., 13 (2016), 269–279 | MR | Zbl
[8] A. Kohnert, “Dominance order and graphical partitions”, Electron. J. Comb., 11:1 (2004), 4, 1–17 | MR | Zbl
[9] P. Erdös, T. Gallai, “Graphs with given degree of vertices”, Math. Lapok, 11 (1960), 264–274
[10] N.V.R. Mahadev, U.N. Peled, Threshold Graphs and Related Topics, Annals of Discrete Mathematics, 56, Elsevier Science, Amsterdam, 1995 | MR | Zbl
[11] V.A. Baransky, T.A. Senchonok, “O porogovyh grafah i realizaciyah graficheskih razbienii”, Tr. Inst. Mat. Mekh. UrO PAN, 23, no. 2, 2017, 1–10 (In Russian)
[12] D.R. Fulkerson, A.J. Hoffman, M.H. McAndrew, “Some properties of graphs with multiple edged”, Canadian J. Math., 17 (1965), 166–177 | MR | Zbl
[13] O. Mel'nikov, R.I. Tyshkevich, V.A. Emelichev, V.N. Sarvanov, Lectures on graph theory, Wissenschaftsverlag, Mannheim, 1994 | MR | Zbl
[14] G. Sierksma, H. Hoogeveen, “Seven Criteria for integer sequences being graphic”, J. Graph Theory, 15:2 (1991), 223–231 | MR | Zbl
[15] V.A. Baransky, T.A. Senchonok, “On shortest sequences of elementary transformations in the partition lattice”, Sib. Electron. Mat. Izv., 15 (2018), 844–852 | MR | Zbl
[16] V.A. Baransky, T.A. Senchonok, “On maximal graphical partitions”, Sib. Electron. Mat. Izv., 14 (2017), 112–124 | MR | Zbl