Classification of links in the thickened Klein bottle
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1680-1696.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper there is a full table of essential non-split links in the thickened Klein bottle, which diagrams have at most 3 crossings. Link diagrams have two or three components. A generalized version of the Kauffman polynomial ia used to prove that all these links are different.
Keywords: thickened Klein bottle, link, link diagram, generalized Kauffman polynomial.
@article{SEMR_2020_17_a58,
     author = {L. R. Nabeeva},
     title = {Classification of links in the thickened {Klein} bottle},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1680--1696},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a58/}
}
TY  - JOUR
AU  - L. R. Nabeeva
TI  - Classification of links in the thickened Klein bottle
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1680
EP  - 1696
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a58/
LA  - ru
ID  - SEMR_2020_17_a58
ER  - 
%0 Journal Article
%A L. R. Nabeeva
%T Classification of links in the thickened Klein bottle
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1680-1696
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a58/
%G ru
%F SEMR_2020_17_a58
L. R. Nabeeva. Classification of links in the thickened Klein bottle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1680-1696. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a58/

[1] J. Drobotukhina, “Classification of links in $RP^3$ with at most six crossings”, Adv. Sov. Math., 18 (1994), 87–121 | MR | Zbl

[2] A. Cattabriga, E. Manfredi, M. Mulazzani, “On knots and links in lens spaces”, Topology Appl., 160:2 (2013), 430–442 | DOI | MR | Zbl

[3] B. Gabrovsek, M. Mroczkowski, “Knots in the solid torus up to 6 crossings”, J. Knot Theory Ramifications, 21:11 (2012), 1250106 | DOI | MR | Zbl

[4] A.A. Akimova, S.V. Matveev, “Classification of genus 1 virtual knots having at most five classification crossings”, J. Knot Theory Ramifications, 23:6 (2014), 1450031 | DOI | MR | Zbl

[5] A.A. Akimova, S.V. Matveev, V.V. Tarkaev, “Classification links of small complexity in the thickened torus”, Proc. Steklov Inst. Math., 303:1 (2018), S12–S24 | MR | Zbl

[6] S.V. Matveev, L.R. Nabeeva, “Tabulating knots in the thickened Klein bottle”, Sib. Math. J., 57:3 (2016), 542–548 | DOI | MR | Zbl

[7] L.R. Nabeeva, “On the equivalence of some tabulation knots in a thickened Klein bottle”, Sib. Electron. Math. Izv., 14 (2017), 1472–1479 | MR | Zbl

[8] Atlas of 3-Manifolds, , Laboratory of Quantum Topology of Chelyabinsk State University http://www.matlas.math.csu.ru

[9] SnapPy 2.5.4 documentation, http://www.math.uic.edu/t3m/SnapPy