Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a58, author = {L. R. Nabeeva}, title = {Classification of links in the thickened {Klein} bottle}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1680--1696}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a58/} }
L. R. Nabeeva. Classification of links in the thickened Klein bottle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1680-1696. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a58/
[1] J. Drobotukhina, “Classification of links in $RP^3$ with at most six crossings”, Adv. Sov. Math., 18 (1994), 87–121 | MR | Zbl
[2] A. Cattabriga, E. Manfredi, M. Mulazzani, “On knots and links in lens spaces”, Topology Appl., 160:2 (2013), 430–442 | DOI | MR | Zbl
[3] B. Gabrovsek, M. Mroczkowski, “Knots in the solid torus up to 6 crossings”, J. Knot Theory Ramifications, 21:11 (2012), 1250106 | DOI | MR | Zbl
[4] A.A. Akimova, S.V. Matveev, “Classification of genus 1 virtual knots having at most five classification crossings”, J. Knot Theory Ramifications, 23:6 (2014), 1450031 | DOI | MR | Zbl
[5] A.A. Akimova, S.V. Matveev, V.V. Tarkaev, “Classification links of small complexity in the thickened torus”, Proc. Steklov Inst. Math., 303:1 (2018), S12–S24 | MR | Zbl
[6] S.V. Matveev, L.R. Nabeeva, “Tabulating knots in the thickened Klein bottle”, Sib. Math. J., 57:3 (2016), 542–548 | DOI | MR | Zbl
[7] L.R. Nabeeva, “On the equivalence of some tabulation knots in a thickened Klein bottle”, Sib. Electron. Math. Izv., 14 (2017), 1472–1479 | MR | Zbl
[8] Atlas of 3-Manifolds, , Laboratory of Quantum Topology of Chelyabinsk State University http://www.matlas.math.csu.ru
[9] SnapPy 2.5.4 documentation, http://www.math.uic.edu/t3m/SnapPy