Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a57, author = {E. A. Morozov}, title = {Symmetries of 3-polytopes with fixed edge lengths}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1580--1587}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a57/} }
E. A. Morozov. Symmetries of 3-polytopes with fixed edge lengths. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1580-1587. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a57/
[1] A. Aigner, G.M. Ziegler, Proofs from THE BOOK, Springer, Berlin, 2018 | MR | Zbl
[2] A.D. Alexandrov, Convex polyhedra, Springer, Berlin, 2005 | MR | Zbl
[3] A.I. Bobenko, B.A. Springborn, “Variational principle for circle patterns, and Koebe's theorem”, Trans. Am. Math. Soc., 356:2 (2004), 659–689 | DOI | MR | Zbl
[4] A.L. Cauchy, “Sur les polygones et polyédres, Second mémoire”, J. de l'École Polythéchnique, 9 (1813), 87–98
[5] D.B. Fuchs, S.L. Tabachnikov, Mathematical omnibus, AMS, Providence, 2007 | MR | Zbl
[6] R.V. Galiulin, S.N. Mikhalev, I.Kh. Sabitov, “Some applications of the formula for the volume of an octahedron”, Math. Notes, 76:1 (2004), 25–40 | DOI | MR | Zbl
[7] R. Kenyon, An introduction to the dimer model, arXiv: math/0310326 | MR
[8] H. Kouřimská, L. Skuppin, B. Springborn, “A Variational principle for cyclic polygons with prescribed edge lengths”, Advances in discrete differential geometry, Springer, Berlin, 2016, 177–195 | MR | Zbl
[9] P. Mani, “Automorphismen von polyedrischen Graphen”, Math. Ann., 192 (1971), 279–303 | DOI | MR | Zbl
[10] I. Pak, Lectures on Discrete and Polyhedral Geometry https://www.math.ucla.edu/p̃ak/geompol8.pdf
[11] B. Springborn, “A unique representation of polyhedral types. Centering via Möbius transformations”, Math. Z., 249:3 (2005), 513–517 | DOI | MR | Zbl
[12] G.M. Ziegler, Lectures on polytopes, Springer, Berlin, 1995 | MR | Zbl