Symmetries of 3-polytopes with fixed edge lengths
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1580-1587.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an interesting class of combinatorial symmetries of polytopes which we call edge-length preserving combinatorial symmetries. These symmetries not only preserve the combinatorial structure of a polytope but also map each edge of the polytope to an edge of the same length. We prove a simple sufficient condition for a polytope to realize all edge-length preserving combinatorial symmetries by isometries of ambient space. The proof of this condition uses Cauchy's rigidity theorem in an unusual way.
Keywords: polytope, isometry, edge-length preserving combinatorial symmetry, circle pattern.
@article{SEMR_2020_17_a57,
     author = {E. A. Morozov},
     title = {Symmetries of 3-polytopes with fixed edge lengths},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1580--1587},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a57/}
}
TY  - JOUR
AU  - E. A. Morozov
TI  - Symmetries of 3-polytopes with fixed edge lengths
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1580
EP  - 1587
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a57/
LA  - en
ID  - SEMR_2020_17_a57
ER  - 
%0 Journal Article
%A E. A. Morozov
%T Symmetries of 3-polytopes with fixed edge lengths
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1580-1587
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a57/
%G en
%F SEMR_2020_17_a57
E. A. Morozov. Symmetries of 3-polytopes with fixed edge lengths. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1580-1587. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a57/

[1] A. Aigner, G.M. Ziegler, Proofs from THE BOOK, Springer, Berlin, 2018 | MR | Zbl

[2] A.D. Alexandrov, Convex polyhedra, Springer, Berlin, 2005 | MR | Zbl

[3] A.I. Bobenko, B.A. Springborn, “Variational principle for circle patterns, and Koebe's theorem”, Trans. Am. Math. Soc., 356:2 (2004), 659–689 | DOI | MR | Zbl

[4] A.L. Cauchy, “Sur les polygones et polyédres, Second mémoire”, J. de l'École Polythéchnique, 9 (1813), 87–98

[5] D.B. Fuchs, S.L. Tabachnikov, Mathematical omnibus, AMS, Providence, 2007 | MR | Zbl

[6] R.V. Galiulin, S.N. Mikhalev, I.Kh. Sabitov, “Some applications of the formula for the volume of an octahedron”, Math. Notes, 76:1 (2004), 25–40 | DOI | MR | Zbl

[7] R. Kenyon, An introduction to the dimer model, arXiv: math/0310326 | MR

[8] H. Kouřimská, L. Skuppin, B. Springborn, “A Variational principle for cyclic polygons with prescribed edge lengths”, Advances in discrete differential geometry, Springer, Berlin, 2016, 177–195 | MR | Zbl

[9] P. Mani, “Automorphismen von polyedrischen Graphen”, Math. Ann., 192 (1971), 279–303 | DOI | MR | Zbl

[10] I. Pak, Lectures on Discrete and Polyhedral Geometry https://www.math.ucla.edu/p̃ak/geompol8.pdf

[11] B. Springborn, “A unique representation of polyhedral types. Centering via Möbius transformations”, Math. Z., 249:3 (2005), 513–517 | DOI | MR | Zbl

[12] G.M. Ziegler, Lectures on polytopes, Springer, Berlin, 1995 | MR | Zbl