Symmetries of 3-polytopes with fixed edge lengths
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1580-1587

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an interesting class of combinatorial symmetries of polytopes which we call edge-length preserving combinatorial symmetries. These symmetries not only preserve the combinatorial structure of a polytope but also map each edge of the polytope to an edge of the same length. We prove a simple sufficient condition for a polytope to realize all edge-length preserving combinatorial symmetries by isometries of ambient space. The proof of this condition uses Cauchy's rigidity theorem in an unusual way.
Keywords: polytope, isometry, edge-length preserving combinatorial symmetry, circle pattern.
@article{SEMR_2020_17_a57,
     author = {E. A. Morozov},
     title = {Symmetries of 3-polytopes with fixed edge lengths},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1580--1587},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a57/}
}
TY  - JOUR
AU  - E. A. Morozov
TI  - Symmetries of 3-polytopes with fixed edge lengths
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1580
EP  - 1587
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a57/
LA  - en
ID  - SEMR_2020_17_a57
ER  - 
%0 Journal Article
%A E. A. Morozov
%T Symmetries of 3-polytopes with fixed edge lengths
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1580-1587
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a57/
%G en
%F SEMR_2020_17_a57
E. A. Morozov. Symmetries of 3-polytopes with fixed edge lengths. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1580-1587. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a57/