A case study in Universal Geometry: extending Apollonian circles to relativistic geometry and finite fields
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1227-1257.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate and extend classical results for the Apollonian circles of a triangle to include relativistic geometries and to hold over general fields, in particular also to finite fields, using the framework of rational trigonometry. Our new results include curvature relations between the three Apollonian circles, criteria for the existence of Isodynamic points, more general formulations of the Lemoine and Brocard axes involving radical axes. Over finite fields the number theoretical aspects of the subject become important.
Keywords: Apollonian circles, chromogeometry, rational trigonometry, curvature, finite fields.
@article{SEMR_2020_17_a56,
     author = {J. C. Ho and N. J. Wildberger},
     title = {A case study in {Universal} {Geometry:} extending {Apollonian} circles to relativistic geometry and finite fields},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1227--1257},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a56/}
}
TY  - JOUR
AU  - J. C. Ho
AU  - N. J. Wildberger
TI  - A case study in Universal Geometry: extending Apollonian circles to relativistic geometry and finite fields
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1227
EP  - 1257
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a56/
LA  - en
ID  - SEMR_2020_17_a56
ER  - 
%0 Journal Article
%A J. C. Ho
%A N. J. Wildberger
%T A case study in Universal Geometry: extending Apollonian circles to relativistic geometry and finite fields
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1227-1257
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a56/
%G en
%F SEMR_2020_17_a56
J. C. Ho; N. J. Wildberger. A case study in Universal Geometry: extending Apollonian circles to relativistic geometry and finite fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1227-1257. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a56/

[1] N. Altshiller, “On the Circles of Apollonius”, American M. S. Bull. (2), 22:5 (1915), 261–263 | MR | Zbl

[2] N. Altshiller-Court, College Geometry. An Introduction to the Modern Geometry of the Triangle and the Circle, 2nd ed., Barnes and Noble, New York, 1952 | MR | Zbl

[3] J. Casey, A treatise on the analytical geometry of the point, line, circle, and conic sections, containing an account of its most recent extensions, Second edition, revised and enlarged, Hodges, Figgis Co, Dublin, 1893 | Zbl

[4] H.S.M. Coxeter, S.L. Greitzer, Geometry Revisited, The Mathematical The L. W. Singer Company, New York, 1967 | MR | Zbl

[5] C. Kimberling, “Triangle centers and central triangles”, Congr. Numerantium, 129 (1998), 1–285 | MR | Zbl

[6] C. Kimberling, Encyclopedia of Triangle Centers http://faculty.evansville.edu/ck6/encyclopedia/ETC.html

[7] N. Le, N.J. Wildberger, “Incenter Circles, Chromogeometry, and the Omega Triangle”, KoG, 18 (2014), 5–18 | MR | Zbl

[8] N.J. Wildberger, Divine Proportions. Rational Trigonometry to Universal Geometry, Wild Egg Books, Sydney, 2005 | MR | Zbl

[9] N.J. Wildberger, Affine and Projective Universal Geometry, arXiv: math/0612499v1

[10] N.J. Wildberger, “Chromogeometry”, Math. Intell., 32:1 (2010), 26–32 | DOI | MR | Zbl

[11] N.J. Wildberger, Algebraic Calculus One, https://www.openlearning.com/courses/algebraic-calculus-one/

[12] P. Yiu, “The circles of Lester, Evans, Parry, and their generalizations”, Forum Geom., 10 (2010), 175–209 | MR | Zbl

[13] P. Yiu, “The Uses of homogeneous barycentric coordinates in plane Euclidean geometry”, Int. J. Math. Educ. Sci. Technol., 31:4 (2000), 569–578 | DOI | MR | Zbl