Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a56, author = {J. C. Ho and N. J. Wildberger}, title = {A case study in {Universal} {Geometry:} extending {Apollonian} circles to relativistic geometry and finite fields}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1227--1257}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a56/} }
TY - JOUR AU - J. C. Ho AU - N. J. Wildberger TI - A case study in Universal Geometry: extending Apollonian circles to relativistic geometry and finite fields JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1227 EP - 1257 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a56/ LA - en ID - SEMR_2020_17_a56 ER -
%0 Journal Article %A J. C. Ho %A N. J. Wildberger %T A case study in Universal Geometry: extending Apollonian circles to relativistic geometry and finite fields %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1227-1257 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a56/ %G en %F SEMR_2020_17_a56
J. C. Ho; N. J. Wildberger. A case study in Universal Geometry: extending Apollonian circles to relativistic geometry and finite fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1227-1257. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a56/
[1] N. Altshiller, “On the Circles of Apollonius”, American M. S. Bull. (2), 22:5 (1915), 261–263 | MR | Zbl
[2] N. Altshiller-Court, College Geometry. An Introduction to the Modern Geometry of the Triangle and the Circle, 2nd ed., Barnes and Noble, New York, 1952 | MR | Zbl
[3] J. Casey, A treatise on the analytical geometry of the point, line, circle, and conic sections, containing an account of its most recent extensions, Second edition, revised and enlarged, Hodges, Figgis Co, Dublin, 1893 | Zbl
[4] H.S.M. Coxeter, S.L. Greitzer, Geometry Revisited, The Mathematical The L. W. Singer Company, New York, 1967 | MR | Zbl
[5] C. Kimberling, “Triangle centers and central triangles”, Congr. Numerantium, 129 (1998), 1–285 | MR | Zbl
[6] C. Kimberling, Encyclopedia of Triangle Centers http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
[7] N. Le, N.J. Wildberger, “Incenter Circles, Chromogeometry, and the Omega Triangle”, KoG, 18 (2014), 5–18 | MR | Zbl
[8] N.J. Wildberger, Divine Proportions. Rational Trigonometry to Universal Geometry, Wild Egg Books, Sydney, 2005 | MR | Zbl
[9] N.J. Wildberger, Affine and Projective Universal Geometry, arXiv: math/0612499v1
[10] N.J. Wildberger, “Chromogeometry”, Math. Intell., 32:1 (2010), 26–32 | DOI | MR | Zbl
[11] N.J. Wildberger, Algebraic Calculus One, https://www.openlearning.com/courses/algebraic-calculus-one/
[12] P. Yiu, “The circles of Lester, Evans, Parry, and their generalizations”, Forum Geom., 10 (2010), 175–209 | MR | Zbl
[13] P. Yiu, “The Uses of homogeneous barycentric coordinates in plane Euclidean geometry”, Int. J. Math. Educ. Sci. Technol., 31:4 (2000), 569–578 | DOI | MR | Zbl