Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a55, author = {S. Klepikova}, title = {On four-dimensional locally homogeneous {pseudo-Riemannian} manifolds with isotropic {Weyl} tensor}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1183--1216}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a55/} }
TY - JOUR AU - S. Klepikova TI - On four-dimensional locally homogeneous pseudo-Riemannian manifolds with isotropic Weyl tensor JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1183 EP - 1216 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a55/ LA - ru ID - SEMR_2020_17_a55 ER -
S. Klepikova. On four-dimensional locally homogeneous pseudo-Riemannian manifolds with isotropic Weyl tensor. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1183-1216. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a55/
[1] V.V. Balaschenko, Yu.G. Nikonorov, E.D. Rodionov, V.V. Slavskii, Homogeneous manifolds: theory and applications: the monography, Poligraphist, Khanty-Mansiisk, 2008
[2] E.D. Rodionov, V.V. Slavskii, L.N. Chibrikova, “Left-invariant Lorentz metrics on three-dimensional Lie groups with a Schouten-Weyl tensor of squared length zero”, Dokl. Math., 71:2 (2005), 238–240 | MR | Zbl
[3] O.P. Khromova, P.N. Klepikov, S.V. Klepikova, E.D. Rodionov, About Schouten-Weyl tensor on 3-dimensional Lorentzian Lie groups, 2017, arXiv: 1708.06614 | MR
[4] J. Milnor, “Curvatures of left invariant metric on Lie group”, Advances in mathematics, 21 (1976), 293–329 | DOI | MR | Zbl
[5] O.P. Gladunova, E.D. Rodionov, V.V. Slavskii, “On harmonic tensors on three-dimensional Lie groups with left-invariant Riemannian metric”, Dokl. Math., 77:2 (2008), 306–309 | DOI | MR | Zbl
[6] A. Besse, Einstein manifolds, Springer-Verlag, Berlin-Heidelberg, 1987 | MR | Zbl
[7] O.P. Khromova, “Application of analytical computations packages for determining the basic geometric characteristics of non-reductive homogeneous pseudo-Riemannian manifolds”, Proceedings of the all-Russian conference “Mathematic and its applications' the fundamental problems of the science and technic”, 2015, 320–326
[8] P.N. Klepikov, E.D. Rodionov, “Application of Symbolic Computation Packages for Investigation of Algebraic Ricci Solitons in Homogeneous (Pseudo)Riemannian Manifolds”, The Izvestiya of ASU, 4 (2017), 306–309
[9] G. Calvaruso, A. Zaeim, “Conformally flat homogeneous pseudo-Riemannian four-manifolds”, Tohoku Math. J., 66:1 (2014), 31–54 | DOI | MR | Zbl
[10] B.B. Komrakov, “Einstein-Maxwell equation on four-dimensional homogeneous spaces”, Lobachevskii J. Math., 8 (2001), 33–165 | MR | Zbl