On four-dimensional locally homogeneous pseudo-Riemannian manifolds with isotropic Weyl tensor
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1183-1216.

Voir la notice de l'article provenant de la source Math-Net.Ru

The papers of many mathematicians are devoted to studying of (pseudo)Riemannian manifolds with zero Weyl tensor (i.e. conformally flat manifolds). Moreover, one can consider manifolds whose Weyl tensor has zero squared length, and itself is not zero. Also such manifolds are called manifolds with isotropic Weyl tensor. In the case of a Riemannian metric, the squared length of a tensor is the sum of the squares of all components in some orthonormal basis, and it is zero iff the tensor itself is trivial. Therefore, it is natural to consider only the case of a pseudo-Riemannian metric. In the case of dimension 3, the Weyl tensor is trivial, and the Schouten–Weyl tensor (also known as the Cotton tensor) is the analogue of the Weyl tensor. The Schouten‑-Weyl tensor was investigated for a left-invariant Lorentzian metric on three-dimensional Lie groups, including the problem of its isotropy, in the work of E.D. Rodionov, V.V. Slavskii, L.N. Chibrikova. In this paper results on the investigation of four-dimensional locally homogeneous spaces with nontrivial isotropy subgroup and with invariant pseudo-Riemannian metric and an isotropic Weyl tensor are presented.
Keywords: (pseudo)Riemannian manifold, isotropic Weyl tensor, systems of computer mathematics.
@article{SEMR_2020_17_a55,
     author = {S. Klepikova},
     title = {On four-dimensional locally homogeneous {pseudo-Riemannian} manifolds with isotropic {Weyl} tensor},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1183--1216},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a55/}
}
TY  - JOUR
AU  - S. Klepikova
TI  - On four-dimensional locally homogeneous pseudo-Riemannian manifolds with isotropic Weyl tensor
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1183
EP  - 1216
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a55/
LA  - ru
ID  - SEMR_2020_17_a55
ER  - 
%0 Journal Article
%A S. Klepikova
%T On four-dimensional locally homogeneous pseudo-Riemannian manifolds with isotropic Weyl tensor
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1183-1216
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a55/
%G ru
%F SEMR_2020_17_a55
S. Klepikova. On four-dimensional locally homogeneous pseudo-Riemannian manifolds with isotropic Weyl tensor. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1183-1216. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a55/

[1] V.V. Balaschenko, Yu.G. Nikonorov, E.D. Rodionov, V.V. Slavskii, Homogeneous manifolds: theory and applications: the monography, Poligraphist, Khanty-Mansiisk, 2008

[2] E.D. Rodionov, V.V. Slavskii, L.N. Chibrikova, “Left-invariant Lorentz metrics on three-dimensional Lie groups with a Schouten-Weyl tensor of squared length zero”, Dokl. Math., 71:2 (2005), 238–240 | MR | Zbl

[3] O.P. Khromova, P.N. Klepikov, S.V. Klepikova, E.D. Rodionov, About Schouten-Weyl tensor on 3-dimensional Lorentzian Lie groups, 2017, arXiv: 1708.06614 | MR

[4] J. Milnor, “Curvatures of left invariant metric on Lie group”, Advances in mathematics, 21 (1976), 293–329 | DOI | MR | Zbl

[5] O.P. Gladunova, E.D. Rodionov, V.V. Slavskii, “On harmonic tensors on three-dimensional Lie groups with left-invariant Riemannian metric”, Dokl. Math., 77:2 (2008), 306–309 | DOI | MR | Zbl

[6] A. Besse, Einstein manifolds, Springer-Verlag, Berlin-Heidelberg, 1987 | MR | Zbl

[7] O.P. Khromova, “Application of analytical computations packages for determining the basic geometric characteristics of non-reductive homogeneous pseudo-Riemannian manifolds”, Proceedings of the all-Russian conference “Mathematic and its applications' the fundamental problems of the science and technic”, 2015, 320–326

[8] P.N. Klepikov, E.D. Rodionov, “Application of Symbolic Computation Packages for Investigation of Algebraic Ricci Solitons in Homogeneous (Pseudo)Riemannian Manifolds”, The Izvestiya of ASU, 4 (2017), 306–309

[9] G. Calvaruso, A. Zaeim, “Conformally flat homogeneous pseudo-Riemannian four-manifolds”, Tohoku Math. J., 66:1 (2014), 31–54 | DOI | MR | Zbl

[10] B.B. Komrakov, “Einstein-Maxwell equation on four-dimensional homogeneous spaces”, Lobachevskii J. Math., 8 (2001), 33–165 | MR | Zbl