Keywords: skeleton, tangle, isotopy.
@article{SEMR_2020_17_a54,
author = {V. M. Nezhinskij},
title = {Isotopy invariants of spatial graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {769--776},
year = {2020},
volume = {17},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a54/}
}
V. M. Nezhinskij. Isotopy invariants of spatial graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 769-776. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a54/
[1] St. Petersburg Math. J., 12:4 (2001), 569–604 | MR | Zbl
[2] M.W. Hirsch, Differential topology, Graduate texts in Mathematics, 33, Springer-Verlag, 1976 | DOI | MR | Zbl
[3] V.M. Nezhinskij, “Spatial graphs, tangles and plane trees”, Algebra i Analiz, 31:6 (2019), 197–207 | MR
[4] V.M. Nezhinskij, “Isotopy invariants of spatial framed graphs”, Nekotorije aktual'nije problemi sovremennoj matematiki i matematicheskogo obrazovanija, Herzenovskije chtenja-2020, Materiali nauchnoj konferencii, 2020 (to appear)
[5] V.M. Nezhinskij, Yu.V. Maslova, “Framings of spatial graphs”, J. Math. Sci., 236:5 (2019), 527–531 | DOI | MR | Zbl
[6] R.S. Palais, “Extending diffeomorphisms”, Proc. Amer. Math. Soc., 11 (1960), 274–277 | DOI | MR | Zbl
[7] Turaev V.G., Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, 18, Walter de Gruyter, Berlin, 1994 | MR | Zbl