Isotopy invariants of spatial graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 769-776.

Voir la notice de l'article provenant de la source Math-Net.Ru

We reduce the problem of isotopy classification of spatial framed graphs equipped with an additional structure – a skeleton and a marked point, to the classical problem of isotopy classification of tangles.
Mots-clés : spatial graph
Keywords: skeleton, tangle, isotopy.
@article{SEMR_2020_17_a54,
     author = {V. M. Nezhinskij},
     title = {Isotopy invariants of spatial graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {769--776},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a54/}
}
TY  - JOUR
AU  - V. M. Nezhinskij
TI  - Isotopy invariants of spatial graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 769
EP  - 776
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a54/
LA  - ru
ID  - SEMR_2020_17_a54
ER  - 
%0 Journal Article
%A V. M. Nezhinskij
%T Isotopy invariants of spatial graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 769-776
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a54/
%G ru
%F SEMR_2020_17_a54
V. M. Nezhinskij. Isotopy invariants of spatial graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 769-776. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a54/

[1] St. Petersburg Math. J., 12:4 (2001), 569–604 | MR | Zbl

[2] M.W. Hirsch, Differential topology, Graduate texts in Mathematics, 33, Springer-Verlag, 1976 | DOI | MR | Zbl

[3] V.M. Nezhinskij, “Spatial graphs, tangles and plane trees”, Algebra i Analiz, 31:6 (2019), 197–207 | MR

[4] V.M. Nezhinskij, “Isotopy invariants of spatial framed graphs”, Nekotorije aktual'nije problemi sovremennoj matematiki i matematicheskogo obrazovanija, Herzenovskije chtenja-2020, Materiali nauchnoj konferencii, 2020 (to appear)

[5] V.M. Nezhinskij, Yu.V. Maslova, “Framings of spatial graphs”, J. Math. Sci., 236:5 (2019), 527–531 | DOI | MR | Zbl

[6] R.S. Palais, “Extending diffeomorphisms”, Proc. Amer. Math. Soc., 11 (1960), 274–277 | DOI | MR | Zbl

[7] Turaev V.G., Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, 18, Walter de Gruyter, Berlin, 1994 | MR | Zbl