Area of a triangle and angle bisectors
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 732-737
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider a triangle $ABC$ with given lengths $l_a,l_b,l_c$ of its internal angle bisectors. We prove that in general, it is impossible to construct a square of the same area as $ABC$ using a ruler and compass. Moreover, it is impossible to express the area of $ABC$ in radicals of $l_a,l_b,l_c$.
Keywords:
area of a triangle, angle bisectors, solution in radicals.
Mots-clés : ruler and compass construction, Galois group of a polynomial, algebraic equation
Mots-clés : ruler and compass construction, Galois group of a polynomial, algebraic equation
@article{SEMR_2020_17_a53,
author = {A. A. Buturlakin and S. S. Presnyakov and D. O. Revin and S. A. Savin},
title = {Area of a triangle and angle bisectors},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {732--737},
publisher = {mathdoc},
volume = {17},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a53/}
}
TY - JOUR AU - A. A. Buturlakin AU - S. S. Presnyakov AU - D. O. Revin AU - S. A. Savin TI - Area of a triangle and angle bisectors JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 732 EP - 737 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a53/ LA - en ID - SEMR_2020_17_a53 ER -
A. A. Buturlakin; S. S. Presnyakov; D. O. Revin; S. A. Savin. Area of a triangle and angle bisectors. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 732-737. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a53/