Area of a triangle and angle bisectors
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 732-737

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a triangle $ABC$ with given lengths $l_a,l_b,l_c$ of its internal angle bisectors. We prove that in general, it is impossible to construct a square of the same area as $ABC$ using a ruler and compass. Moreover, it is impossible to express the area of $ABC$ in radicals of $l_a,l_b,l_c$.
Keywords: area of a triangle, angle bisectors, solution in radicals.
Mots-clés : ruler and compass construction, Galois group of a polynomial, algebraic equation
@article{SEMR_2020_17_a53,
     author = {A. A. Buturlakin and S. S. Presnyakov and D. O. Revin and S. A. Savin},
     title = {Area of a triangle and angle bisectors},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {732--737},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a53/}
}
TY  - JOUR
AU  - A. A. Buturlakin
AU  - S. S. Presnyakov
AU  - D. O. Revin
AU  - S. A. Savin
TI  - Area of a triangle and angle bisectors
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 732
EP  - 737
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a53/
LA  - en
ID  - SEMR_2020_17_a53
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%A S. S. Presnyakov
%A D. O. Revin
%A S. A. Savin
%T Area of a triangle and angle bisectors
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 732-737
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a53/
%G en
%F SEMR_2020_17_a53
A. A. Buturlakin; S. S. Presnyakov; D. O. Revin; S. A. Savin. Area of a triangle and angle bisectors. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 732-737. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a53/