Local theorems for finite -- dimensional increments of compound multidimensional arithmetic renewal processes with light tails
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1766-1786.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue to study the compound renewal processes under the Cramèr moment condition, which was started by A.A. Borovkov and A.A. Mogulskii (2013). In the present paper we study arithmetic multidimensional compound renewal process, for which the "control – ling" random vector $\xi=(\tau,\zeta)$ ($\tau>0$ determines the distance between the jumps, $\zeta$ determines the value of jumps of the compound renewal process) has an arithmetic distribution with light tails. For these processes we propose wide conditions (close to necessary), under which we can find exact asymptotics in local limit theorems for finite – dimensional increments.
Keywords: compound multidimensional arithmetic renewal process, large deviations, moderate deviations, renewal measure, Cramer’s condition, rate function, local theorems for finite – dimensional increments.
@article{SEMR_2020_17_a51,
     author = {A. V. Logachov and A. A. Mogulskii},
     title = {Local theorems for finite -- dimensional increments of compound multidimensional arithmetic renewal processes with light tails},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1766--1786},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a51/}
}
TY  - JOUR
AU  - A. V. Logachov
AU  - A. A. Mogulskii
TI  - Local theorems for finite -- dimensional increments of compound multidimensional arithmetic renewal processes with light tails
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1766
EP  - 1786
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a51/
LA  - ru
ID  - SEMR_2020_17_a51
ER  - 
%0 Journal Article
%A A. V. Logachov
%A A. A. Mogulskii
%T Local theorems for finite -- dimensional increments of compound multidimensional arithmetic renewal processes with light tails
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1766-1786
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a51/
%G ru
%F SEMR_2020_17_a51
A. V. Logachov; A. A. Mogulskii. Local theorems for finite -- dimensional increments of compound multidimensional arithmetic renewal processes with light tails. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1766-1786. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a51/

[1] A.A. Borovkov, Asymptotic analysis of random walks. Rapidly decreasing distributions of increments, Fizmatlit, M., 2013 | Zbl

[2] A.A. Borovkov, “Large deviation principles in boundary problems for compound renewal processes”, Sib. Math. J., 57:3 (2016), 442–469 | DOI | MR | Zbl

[3] A.A. Borovkov, A.A. Mogulskii, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Sib. Math. J., 56:1 (2015), 28–53 | DOI | MR | Zbl

[4] A.A. Borovkov, A.A. Mogulskii, “Large deviation principles for trajectories of compound renewal processes. I”, Theory Probab. Appl., 60:2 (2016), 207–224 | DOI | MR | Zbl

[5] A.A. Borovkov, A.A. Mogulskii, “Large deviation principles for trajectories of compound renewal processes. II”, Theory Probab. Appl., 60:3 (2016), 349–366 | DOI | MR | Zbl

[6] A.A. Borovkov, A.A. Mogulskii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Sib. Math. J., 37:4 (1996), 647–682 | DOI | MR | Zbl

[7] A.A. Borovkov, A.A. Mogulskii, “Chebyshev-type exponential inequalities for sums of random vectors and for trajectories of random walks”, Theory Probab. Appl., 56:1 (2011), 21–43 | MR | Zbl

[8] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramer's condition. I”, Sib. Math. J., 59:3 (2018), 383–402 | DOI | MR | Zbl

[9] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramer's condition. II”, Sib. Math. J., 59:4 (2018), 578–597 | DOI | MR | Zbl

[10] A.A. Borovkov, A.A. Mogulskii, E.I. Prokopenko, “Properties of the deviation rate function and the asymptotics for the Laplace transform of the distribution of a compound renewal process”, Theory Probab. Appl., 64:4 (2019), 499–512 | DOI | MR | Zbl

[11] D.R. Cox, Renewal Theory, Methuen, London etc, 1962 | MR | Zbl

[12] A.A. Mogulskii, “Local theorems for arithmetic compound renewal processes when Cramer's condition holds”, Sib. Electron. Math. Izv., 16 (2019), 21–41 | DOI | MR | Zbl

[13] A.A. Mogulskii, E.I. Prokopenko, “The rate function and the fundamental function for multidimensional compound renewal process”, Sib. Electron. Math. Izv., 16 (2019), 1449–1463 | DOI | MR | Zbl

[14] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I”, Sib. Electron. Math. Izv., 15 (2018), 475–502 | MR | Zbl

[15] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II”, Sib. Electron. Math. Izv., 15 (2018), 503–527 | MR | Zbl

[16] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III”, Sib. Electron. Math. Izv., 15 (2018), 528–553 | MR | Zbl

[17] A.A. Mogulskii, E.I. Prokopenko, “Local theorems for arithmetic multidimensional compound renewal processes”, Matematicheskie trudy, 22:2 (2019), 106–133 | MR

[18] S. Asmussen, H. Albrecher, Ruin Probabilities, Advanced Series on Statistical Science Applied Probability, 14, 2nd ed., Word Scientifics, Hackensack, 2010 | DOI | MR | Zbl

[19] M. Kotulski, “Asymptotic distributions of continuous-time random walks: A probabilistic approch”, J. Stat. Phis., 81:3–4 (1995), 777–792 | DOI | Zbl

[20] A.A. Mogulskii, E.I. Prokopenko, “Large deviation principle for multidimensional first compound renewal processes in the phase space”, Sib. Electron. Math. Izv., 16 (2019), 1464–1477 | DOI | MR | Zbl

[21] A.A. Mogulskii, E.I. Prokopenko, “Large deviation principle for multidimensional second compound renewal processes in the phase space”, Sib. Electron. Math. Izv., 16 (2019), 1478–1492 | DOI | MR | Zbl

[22] M. Zamparo, Large Deviations in Discrete-Time Renewal Theory, 2019, arXiv: 1903.03537

[23] R. Lefevre, M. Mariani, L. Zambotti, “Large deviations for renewal processes”, Stochastic Processes Appl., 121:10 (2011), 2243–2271 | DOI | MR | Zbl

[24] B. Tsirelson, “From uniform renewal theorem to uniform large and moderate deviations for renewal-reward processes”, Electron. Commun. Probab., 18 (2013), 52 | MR | Zbl

[25] A.A. Mogulskii, E.I. Prokopenko, “Large deviation principles for the finite-dimensional distributions of multidimensional compound renewal processes”, Matematicheskie trudy, 23:2 (2020), 1–29 | MR

[26] A. Jurlewicz, M.M. Meerschaert, H.-P. Scheffler, “Cluster continuous time random walks”, Stud. Math., 205:1 (2011), 13–30 | DOI | MR | Zbl

[27] B.V. Gnedenko, Y.K. Belyaev, A.D. Solov'ev, Matematicheskie metody v teorii nadezhnosti, Nauka, M., 1965 | Zbl

[28] F. Slanina, Essentials of econophysics modelling, Oxford University Press, Oxford, 2013 | MR | Zbl

[29] M. Zamparo, “Large deviations in renewal models of statistical mechanics”, J. Phys. A: Math. Theor., 52 (2019), 495004 | MR