On the maximal displacement of catalytic branching random walk
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1088-1099.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the distribution of the maximal displacement of particle positions for the whole time of the existence of population in the model of critical and subcritical catalytic branching random walk on $\mathbb{Z}$. In particular, we prove that in the case of simple symmetric random walk on $\mathbb{Z}$, the distribution of the maximal displacement has a "heavy" tail', decreasing as a function of the power $1/2$ or $1$ when the branching process is critical or subcritical, respectively. These statements describe the effects which had not arisen before in related studies on the maximal displacement of critical and subcritical branching random walks on $\mathbb{Z}$.
Keywords: catalytic branching random walk, critical regime, subcritical regime, "heavy" tails.
Mots-clés : maximal displacement
@article{SEMR_2020_17_a49,
     author = {E. Vl. Bulinskaya},
     title = {On the maximal displacement of catalytic branching random walk},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1088--1099},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a49/}
}
TY  - JOUR
AU  - E. Vl. Bulinskaya
TI  - On the maximal displacement of catalytic branching random walk
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1088
EP  - 1099
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a49/
LA  - en
ID  - SEMR_2020_17_a49
ER  - 
%0 Journal Article
%A E. Vl. Bulinskaya
%T On the maximal displacement of catalytic branching random walk
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1088-1099
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a49/
%G en
%F SEMR_2020_17_a49
E. Vl. Bulinskaya. On the maximal displacement of catalytic branching random walk. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1088-1099. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a49/

[1] D. Bertacchi, F. Zucca, “Strong local survival of branching random walks is not monotone”, Adv. Appl. Probab., 46:2 (2014), 400–421 | DOI | MR | Zbl

[2] S. Bocharov, L. Wang, “Branching Brownian motion with spatially homogeneous and point-catalytic branching”, J. Appl. Probab., 56:3 (2019), 891–917 | DOI | MR | Zbl

[3] A.A. Borovkov, Probability Theory, Springer, London, 2013 | MR | Zbl

[4] E.Vl. Bulinskaya, “Finiteness of hitting times under taboo”, Statistics and Probability Letters, 85:1 (2014), 15–19 | DOI | MR | Zbl

[5] E.Vl. Bulinskaya, “Complete classification of catalytic branching processes”, Theory Probab. Appl., 59:4 (2015), 545–566 | DOI | MR | Zbl

[6] E.Vl. Bulinskaya, “Strong and weak convergence of the population size in a supercritical catalytic branching process”, Dokl. Math., 92:3 (2015), 714–718 | DOI | MR | Zbl

[7] E.Vl. Bulinskaya, “Spread of a catalytic branching random walk on a multidimensional lattice”, Stoch. Proc. Appl., 128:7 (2018), 2325–2340 | DOI | MR | Zbl

[8] E.Vl. Bulinskaya, “Maximum of catalytic branching random walk with regularly varying tails”, J. Theor. Probab., 2020 | DOI | MR

[9] E.Vl. Bulinskaya, Catalytic branching random walk with semiexponential increments, Math. Popul. Stud., 2020 | DOI

[10] E.Vl. Bulinskaya, “Maximum of a catalytic branching random walk”, Russ. Math. Surv., 74:3 (2019), 546–548 | DOI | MR | Zbl

[11] E.Vl. Bulinskaya, “Fluctuations of the propagation front of a catalytic branching walk”, Theory Probab. Appl., 64:4 (2020), 513–534 | DOI | MR | Zbl

[12] Ph. Carmona, Y. Hu, “The spread of a catalytic branching random walk”, Ann. Inst. Henri Poincaré Probab. Stat., 50:2 (2014), 327–351 | DOI | MR | Zbl

[13] I.I. Khristolyubov, E.B. Yarovaya, “A limit theorem for supercritical branching random walks with branching sources of varying intencity”, Theory Prob. Appl., 64:3 (2019), 365–384 | DOI | MR | Zbl

[14] A. Kurosh, Higher Algebra, MIR Publishers, M., 1972 | MR | Zbl

[15] S.P. Lalley, Y. Shao, “On the maximal displacement of critical branching random walk”, Probab. Theory Relat. Fields, 162:1 (2015), 71–96 | DOI | MR | Zbl

[16] B. Mallein, “Asymptotic of the maximal displacement in a branching random walk”, Graduate J. Math., 1:1 (2016), 92–104 | MR

[17] S.A. Molchanov, E.B. Yarovaya, “Branching processes with lattice spatial dynamics and a finite set of particle generation centers”, Dokl. Math., 86:2 (2012), 638–641 | DOI | MR | Zbl

[18] E. Neuman, X. Zheng, “On the maximal displacement of subcritical branching random walks”, Probab. Theory Relat. Fields, 167:4 (2017), 1137–1164 | DOI | MR | Zbl

[19] M. Öz, On the density of branching Brownian motion in subcritical balls, 2019, arXiv: 1909.06197

[20] M.V. Platonova, K.S. Ryadovkin, “On the mean number of particles of a branching random walk on $\mathbb{Z}^d$ with periodic sources of branching”, Dokl. Math., 97:2 (2018), 140–143 | DOI | MR | Zbl

[21] S. Ray, R.S. Hazra, P. Roy, Ph. Soulier, Branching random walk with infinite progeny mean: a tale of two tails, 2019, arXiv: 1909.08948

[22] Z. Shi, Branching Random Walks, Lecture Notes in Math., 2151, Springer, 2015 | DOI | MR | Zbl

[23] A.N. Shiryaev, Probability-1, Springer, New York, 2016 | MR | Zbl

[24] Y. Shiozawa, “Maximal displacement and population growth for branching Brownian motions”, Ill. J. Math., 63:3 (2019), 353–402 | DOI | MR | Zbl

[25] V.A. Topchii, V.A. Vatutin, “Catalytic branching random walks in $\mathbb{Z}^d$ with branching at the origin only”, Sib. Adv. Math., 23:2 (2013), 193–153 | DOI | MR | Zbl

[26] L. Wang, G. Zong, “Supercritical branching Brownian motion with catalytic branching at the origin”, Sci. China Math., 63:3 (2019), 595–616 | DOI | MR | Zbl