On the maximal displacement of catalytic branching random walk
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1088-1099

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the distribution of the maximal displacement of particle positions for the whole time of the existence of population in the model of critical and subcritical catalytic branching random walk on $\mathbb{Z}$. In particular, we prove that in the case of simple symmetric random walk on $\mathbb{Z}$, the distribution of the maximal displacement has a "heavy" tail', decreasing as a function of the power $1/2$ or $1$ when the branching process is critical or subcritical, respectively. These statements describe the effects which had not arisen before in related studies on the maximal displacement of critical and subcritical branching random walks on $\mathbb{Z}$.
Keywords: catalytic branching random walk, critical regime, subcritical regime, "heavy" tails.
Mots-clés : maximal displacement
@article{SEMR_2020_17_a49,
     author = {E. Vl. Bulinskaya},
     title = {On the maximal displacement of catalytic branching random walk},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1088--1099},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a49/}
}
TY  - JOUR
AU  - E. Vl. Bulinskaya
TI  - On the maximal displacement of catalytic branching random walk
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1088
EP  - 1099
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a49/
LA  - en
ID  - SEMR_2020_17_a49
ER  - 
%0 Journal Article
%A E. Vl. Bulinskaya
%T On the maximal displacement of catalytic branching random walk
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1088-1099
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a49/
%G en
%F SEMR_2020_17_a49
E. Vl. Bulinskaya. On the maximal displacement of catalytic branching random walk. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1088-1099. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a49/