Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a49, author = {E. Vl. Bulinskaya}, title = {On the maximal displacement of catalytic branching random walk}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1088--1099}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a49/} }
E. Vl. Bulinskaya. On the maximal displacement of catalytic branching random walk. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1088-1099. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a49/
[1] D. Bertacchi, F. Zucca, “Strong local survival of branching random walks is not monotone”, Adv. Appl. Probab., 46:2 (2014), 400–421 | DOI | MR | Zbl
[2] S. Bocharov, L. Wang, “Branching Brownian motion with spatially homogeneous and point-catalytic branching”, J. Appl. Probab., 56:3 (2019), 891–917 | DOI | MR | Zbl
[3] A.A. Borovkov, Probability Theory, Springer, London, 2013 | MR | Zbl
[4] E.Vl. Bulinskaya, “Finiteness of hitting times under taboo”, Statistics and Probability Letters, 85:1 (2014), 15–19 | DOI | MR | Zbl
[5] E.Vl. Bulinskaya, “Complete classification of catalytic branching processes”, Theory Probab. Appl., 59:4 (2015), 545–566 | DOI | MR | Zbl
[6] E.Vl. Bulinskaya, “Strong and weak convergence of the population size in a supercritical catalytic branching process”, Dokl. Math., 92:3 (2015), 714–718 | DOI | MR | Zbl
[7] E.Vl. Bulinskaya, “Spread of a catalytic branching random walk on a multidimensional lattice”, Stoch. Proc. Appl., 128:7 (2018), 2325–2340 | DOI | MR | Zbl
[8] E.Vl. Bulinskaya, “Maximum of catalytic branching random walk with regularly varying tails”, J. Theor. Probab., 2020 | DOI | MR
[9] E.Vl. Bulinskaya, Catalytic branching random walk with semiexponential increments, Math. Popul. Stud., 2020 | DOI
[10] E.Vl. Bulinskaya, “Maximum of a catalytic branching random walk”, Russ. Math. Surv., 74:3 (2019), 546–548 | DOI | MR | Zbl
[11] E.Vl. Bulinskaya, “Fluctuations of the propagation front of a catalytic branching walk”, Theory Probab. Appl., 64:4 (2020), 513–534 | DOI | MR | Zbl
[12] Ph. Carmona, Y. Hu, “The spread of a catalytic branching random walk”, Ann. Inst. Henri Poincaré Probab. Stat., 50:2 (2014), 327–351 | DOI | MR | Zbl
[13] I.I. Khristolyubov, E.B. Yarovaya, “A limit theorem for supercritical branching random walks with branching sources of varying intencity”, Theory Prob. Appl., 64:3 (2019), 365–384 | DOI | MR | Zbl
[14] A. Kurosh, Higher Algebra, MIR Publishers, M., 1972 | MR | Zbl
[15] S.P. Lalley, Y. Shao, “On the maximal displacement of critical branching random walk”, Probab. Theory Relat. Fields, 162:1 (2015), 71–96 | DOI | MR | Zbl
[16] B. Mallein, “Asymptotic of the maximal displacement in a branching random walk”, Graduate J. Math., 1:1 (2016), 92–104 | MR
[17] S.A. Molchanov, E.B. Yarovaya, “Branching processes with lattice spatial dynamics and a finite set of particle generation centers”, Dokl. Math., 86:2 (2012), 638–641 | DOI | MR | Zbl
[18] E. Neuman, X. Zheng, “On the maximal displacement of subcritical branching random walks”, Probab. Theory Relat. Fields, 167:4 (2017), 1137–1164 | DOI | MR | Zbl
[19] M. Öz, On the density of branching Brownian motion in subcritical balls, 2019, arXiv: 1909.06197
[20] M.V. Platonova, K.S. Ryadovkin, “On the mean number of particles of a branching random walk on $\mathbb{Z}^d$ with periodic sources of branching”, Dokl. Math., 97:2 (2018), 140–143 | DOI | MR | Zbl
[21] S. Ray, R.S. Hazra, P. Roy, Ph. Soulier, Branching random walk with infinite progeny mean: a tale of two tails, 2019, arXiv: 1909.08948
[22] Z. Shi, Branching Random Walks, Lecture Notes in Math., 2151, Springer, 2015 | DOI | MR | Zbl
[23] A.N. Shiryaev, Probability-1, Springer, New York, 2016 | MR | Zbl
[24] Y. Shiozawa, “Maximal displacement and population growth for branching Brownian motions”, Ill. J. Math., 63:3 (2019), 353–402 | DOI | MR | Zbl
[25] V.A. Topchii, V.A. Vatutin, “Catalytic branching random walks in $\mathbb{Z}^d$ with branching at the origin only”, Sib. Adv. Math., 23:2 (2013), 193–153 | DOI | MR | Zbl
[26] L. Wang, G. Zong, “Supercritical branching Brownian motion with catalytic branching at the origin”, Sci. China Math., 63:3 (2019), 595–616 | DOI | MR | Zbl