Stochastic stability of a system of perfect integrate-and-fire inhibitory neurons
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 971-987.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a system of perfect integrate-and-fire inhibitory neurons. It is a system of stochastic processes which interact through receiving an instantaneous increase at the moments they reach certain thresholds. In the absence of interactions, these processes behave as a spectrally positive Lévy processes. Using the fluid approximation approach, we prove convergence to a stable distribution in total variation.
Keywords: spiking neural network, Lévy process, stability, fluid limits.
@article{SEMR_2020_17_a48,
     author = {T. V. Prasolov},
     title = {Stochastic stability of a system of perfect integrate-and-fire inhibitory neurons},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {971--987},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a48/}
}
TY  - JOUR
AU  - T. V. Prasolov
TI  - Stochastic stability of a system of perfect integrate-and-fire inhibitory neurons
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 971
EP  - 987
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a48/
LA  - en
ID  - SEMR_2020_17_a48
ER  - 
%0 Journal Article
%A T. V. Prasolov
%T Stochastic stability of a system of perfect integrate-and-fire inhibitory neurons
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 971-987
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a48/
%G en
%F SEMR_2020_17_a48
T. V. Prasolov. Stochastic stability of a system of perfect integrate-and-fire inhibitory neurons. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 971-987. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a48/

[1] T. Taillefumier, Informal talk

[2] L. Lapicque, “Recherches quatitatives sur l'excitation electrique des nerfs traitée comme une polarization”, J. Physiol. (Paris), 9 (1907), 620–635

[3] A. Burkitt, “A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input”, Biol. Cybern., 95:1 (2006), 1–19 | DOI | MR | Zbl

[4] A. Burkitt, “A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties”, Biol. Cybern., 95:2 (2006), 97–112 | DOI | MR | Zbl

[5] W. Gerstner, W. Kistler, Spiking neuron models: Single neurons, populations, plasticity, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[6] A.L. Hodgkin, A.F. Huxley, “Quantitative description of ion currents and its applications to conduction and excitation in nerve membranes”, J. Physiol. (Lond.), 117 (1952), 500–544 | DOI

[7] R.B. Stein, “A theoretical analysis of neuronal variability”, Biophys. J., 5 (1965), 173–194 | DOI

[8] P.E. Latham, B.J., Richmond, P.G. Nelson, S. Nirenberg, “Intrinsic dynamics in neuronal networks. I. Theory”, J. Neurophysiol., 83 (2000), 808–827 | DOI

[9] T. Taillefumier, J. Touboul, M. Magnasco, “Exact event-driven implementation for recurrent networks of s tochastic perfect integrate-and-fire neurons”, Neural Comput., 24:12 (2012), 3145–3180 | DOI | MR | Zbl

[10] M. Cottrell, “Mathematical analysis of a neural network with inhibitory coupling”, Stochastic Process. Appl., 40:1 (1992), 103–126 | DOI | MR | Zbl

[11] V.A. Malys̆ev, “Classification of two-dimensional positive random walks and almost linear semimartingales”, Sov. Math. Dokl., 13 (1972), 136–139 | Zbl

[12] V.A. Malys̆ev, M V. Men's̆ikov, “Ergodicity, continuity and analyticity of countable Markov chains”, Tr. Mosk. Mat. O.-va, 39, 1979, 3–48 | MR | Zbl

[13] A.N. Rybko, A.L. Stolyar, “Ergodicity of stochastic processes describing the operations of open queueing networks”, Probl. Inf. Transm., 28:3 (1992), 199–220 | MR | Zbl

[14] J.G. Dai, “On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models”, Ann. Appl. Probab., 5:1 (1995), 49–77 | DOI | MR | Zbl

[15] A.I. Stolyar, “On the stability of multiclass queueing networks: A relaxed sufficient condition via limiting fluid processes”, Markov Process. Relat., 1:4 (1995), 491–512 | MR | Zbl

[16] S.G. Foss, A.P. Kovalevskii, “A stability criterion via fluid limits and its application to a polling system”, Queueing Syst., 32:1–3 (1999), 131–168 | DOI | MR | Zbl

[17] A.A. Borovkov, S.G. Foss, “Stochastically recursive sequences and their generalisations”, Sib. Adv. Math., 2:1 (1992), 16–81 | MR | Zbl

[18] S. Asmussen, Applied probability and queues, 2nd edition, Springer-Verlag, New-York, 2003 | MR | Zbl

[19] S.G. Foss, T. Konstantopoulos, “An overview of some stochastic stability methods”, J. Oper. Res. Soc. Jahan, 47:4 (2004), 275–303 | MR | Zbl

[20] A. De Masi, A. Galves, E. Löcherbach, E. Presutti, “Hydrodynamic limit for interacting neurons”, J. Stat. Phys., 158:4 (2015), 866–902 | DOI | MR | Zbl

[21] J. Inglis, D. Talay, “Mean-field limit of a stochastic particle system smoothly interacting threshold hitting-times and applications to neural networks with dendritic component”, SIAM J. Math. Anal., 47:5 (2015), 3884–3916 | DOI | MR | Zbl

[22] P. Robert, J. Touboul, “On the dynamics of random neuronal networks”, J. Stat. Phys., 165:3 (2016), 545–584 | DOI | MR | Zbl

[23] M.J. Cáceres, J.A. Carrillo, B. Perthame, “Analysis of nonlinear noisy integrate and fire neuron models: blow-up and steady states”, J. Math. Neurosci., 1 (2011), 7 | DOI | MR | Zbl

[24] F. Delarue, J. Inglis, S. Rubenthaler, E. Tanré, “Global solvabilityof a networked integrate-and-fire model of McKean-Vlasov type”, Ann. Appl. Probab., 25:4 (2015), 2096–2133 | DOI | MR | Zbl

[25] F. Karpelevich, V.A. Malyshev, A.N. Rybko, “Stochastic Evolution of Neural Networks”, Markov Process. Relat. Fields, 1:1 (1995), 141–161 | MR | Zbl

[26] A.A. Borovkov, “On the first passage time for one class of processes with independent increments”, Theor. Veroyatn. Primen., 10 (1965), 360–364 | MR | Zbl

[27] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, John Wiley Sons, New York–London–Sydney, 1971 | MR | Zbl

[28] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge studies in advanced mathematics, 68, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[29] R.A. Doney, R.A. Maller, “Stability and attraction to normality for Lévy processes at zero and at infinity”, J. Theor. Probab., 15:3 (2001), 751–792 | DOI | MR | Zbl

[30] I. Karatzas, S.E. Shreve, Brownian motion and stochastic calculus, Springer-Verlag, New-York, 1991 | MR | Zbl

[31] M.S. Joshi, The Concepts and Practice of Mathematical Finance, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[32] A.V. Skorokhod, “Limit theorems for stochastic processes”, Theor. Veroyatn. Primen., 1 (1956), 289–319 | MR | Zbl