Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a47, author = {A. P. Kovalevskii}, title = {Asymptotics of an empirical bridge of regression on induced order statistics}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {954--963}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a47/} }
TY - JOUR AU - A. P. Kovalevskii TI - Asymptotics of an empirical bridge of regression on induced order statistics JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 954 EP - 963 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a47/ LA - en ID - SEMR_2020_17_a47 ER -
A. P. Kovalevskii. Asymptotics of an empirical bridge of regression on induced order statistics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 954-963. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a47/
[1] A. Aue, L. Horvath, M. Huskova, P. Kokoszka, “Testing for changes in polynomial regression”, Bernoulli, 14 (2008), 637–660 | DOI | MR | Zbl
[2] A. Aue, L. Horvath, “Structural breaks in time series”, Journal of Time Series Analysis, 34:1 (2013), 1–16 | DOI | MR | Zbl
[3] A. Aue, G. Rice, O. Sonmez, “Detecting and dating structural breaks in functional data without dimension reduction”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80:3 (2018), 509–529 | DOI | MR | Zbl
[4] N. Balakrishnan, A.C. Cohen, Order Statistics and Inference: Estimation Methods, Academic Press, Boston, MA, 1991 | MR | Zbl
[5] P.K. Bhattacharya, “Convergence of sample paths of normalized sums of induced order statistics”, The Annals of Statist., 2 (1974), 1034–1039 | DOI | MR | Zbl
[6] P.K. Bhattacharya, “An invariance principle in regression analysis”, The Annals of Statist., 4 (1976), 621–624 | DOI | MR | Zbl
[7] P.K. Bhattacharya, “Induced order statistics: Theory and applications”, Handbook of Statistics, v. 4, eds. P.R. Krishnaiah, P. K. Sen, North-Holland, Amsterdam, 1984, 383–403 | DOI | MR | Zbl
[8] W. Bischoff, “A functional central limit theorem for regression models”, Ann. Stat., 26 (1998), 1398–1410 | DOI | MR | Zbl
[9] R.L. Brown, J. Durbin, J.M. Evans, “Techniques for testing the constancy of regression relationships over time”, J. R. Statist. Soc., 37 (1975), 149–192 | MR | Zbl
[10] H.A. David, “Concomitants of order statistics”, Bull. Internat. Statist. Inst., 45 (1973), 295–300 | MR | Zbl
[11] H.A. David, J. Galambos, “The asymptotic theory of concomitants of order statistics”, J. Appl. Probab., 11 (1974), 762–770 | DOI | MR | Zbl
[12] H.A. David, H N. Nagaraja, “Concomitants of order statistics”, Order Statistics: Theory and Methods, 1998, 487–513 | MR | Zbl
[13] H.A. David, H N. Nagaraja, Order Statistics, John Wiley Sons, New Jersey, 2003 | MR | Zbl
[14] H.A. David, M.J. O'Connell, S.S. Yang, “Distribution and expected value of the rank of a concomitant of an order statistics”, The Annals of Statist., 5 (1977), 216–223 | DOI | MR | Zbl
[15] Y. Davydov, V. Egorov, “Functional limit theorems for induced order statistics”, Mathematical Methods of Statistics, 9:3 (2000), 297–313 | MR | Zbl
[16] Y. Davydov, R. Zitikis, “Convex rearrangements of random elements”, Fields Institute Communications, 44 (2004), 141–171 | MR | Zbl
[17] P. Deheuvels, G.V. Martynov, “Cramer-von mises-type tests with applications to tests of independence for multivariate extreme-value distributions”, Communications in Statistics — Theory and Methods, 25:4 (1996), 871–908 | DOI | MR | Zbl
[18] F. Domma, S. Giordano, “Concomitants of m-generalized order statistics from generalized Farlie-Gumbel-Morgenstern distribution family”, Journal of Computational and Applied Mathematics, 294 (2016), 413–435 | MR | Zbl
[19] N.R. Draper, H. Smith, Applied Regression Analysis, Wiley Series in Probability and Statistics, 1998 | DOI | MR | Zbl
[20] V.A. Egorov, V.B. Nevzorov, “Some theorems on induced order statistics”, Theory Prob. Appl., 27:3 (1983), 633–639 | MR | Zbl
[21] V.A. Egorov, V.B. Nevzorov, “Rate of convergence to the normal law of sums of induced order statistics”, J. of Soviet Math., 25:3 (1984), 1139–1146 | MR | Zbl
[22] J. Einmah, D. Mason, “Strong limit theorems for weighted quantile processes”, Annals. Probab., 16:4 (1988), 1623–1643 | DOI | MR | Zbl
[23] S. EryIlmaz, I.G. Bairamov, “On a new sample rank of an order statistics and its concomitant”, Statistics $\$ Probability Letters, 63:2 (2003), 123–131 | DOI | MR | Zbl
[24] F. Galton, Natural Inheritance, Macmillan, London, 1889 http://galton.org/books/natural-inheritance/index.html
[25] J.L. Gastwirth, “A general definition of the Lorenz curve”, Econometrica, 39 (1971), 1037–1039 | DOI | Zbl
[26] C.M. Goldie, “Convergence theorems for empirical Lorenz curves and their inverses”, Adv. Appl. Prob., 9 (1977), 765–791 | DOI | MR | Zbl
[27] H.L. Koul, Weighted Empirical Processes in Dynamic Nonlinear Models, Springer Verlag, New York, 2002 | MR | Zbl
[28] A. Kovalevskii, “A regression model for prices of second-hand cars. Applied methods of statistical analysis”, Applications in survival analysis, reliability and quality control, 2013, 124–128
[29] A.P. Kovalevskii, E.V. Shatalin, “Asymptotics of Sums of Residuals of One-Parameter Linear Regression on Order Statistics”, Theory of probability and its applications, 59:3 (2015), 375–387 | DOI | MR | Zbl
[30] A. Kovalevskii, E. Shatalin, “A limit process for a sequence of partial sums of residuals of a simple regression on order statistics”, Probability and Mathematical Statistics, 36:1 (2016), 113–120 | MR | Zbl
[31] I.B. MacNeill, “Limit processes for sequences of partial sums of regression residuals”, Ann. Prob., 6 (1978), 695–698 | DOI | MR | Zbl
[32] G.V. Martynov, Omega-square tests, Nauka, M., 1978 (in Russian) | MR | Zbl
[33] A.I. Sakhanenko, O.A. Sukhovershina, “On accuracy of approximation in Koul's theorem for weighted empirical processes”, Sib. Elektron. Mat. Izv., 12 (2015), 784–794 | MR | Zbl
[34] P.K. Sen, “A note on invariance principles for induced order statistics”, The Annals of Probab., 4 (1976), 474–479 | DOI | MR | Zbl
[35] M.Q. Shahbaz, S. Shahbaz, M. Mohsin, A. Rafiq, “On distribution of bivariate concomitants of records”, Applied Mathematics Letters, 23:5 (2010), 567–570 | DOI | MR | Zbl
[36] G. Shorack, J. Wellner, Empirical processes with applications to statistics, Wiley, N. Y., 1986 | MR | Zbl
[37] A. Stepanov, A. Berred, V. B. Nevzorov, “Concomitants of records: Limit results, generation techniques, correlation”, Statistics $\$ Probability Letters, 109 (2016), 184–188 | DOI | MR | Zbl
[38] W. Stute, “Nonparametric model checks for regression”, Ann. Statist., 25 (1997), 613–641 | DOI | MR | Zbl
[39] N. Wirth, Algorithms and Data Structures, Prentice-Hall, NJ, 1986 | MR | Zbl
[40] S.S. Yang, “General distribution theory of the concomitants of order statistics”, The Annals of Statist., 5 (1977), 996–1002 | DOI | MR | Zbl
[41] E. Zamanzade, M. Vock, “Variance estimation in ranked set sampling using a concomitant variable”, Statistics $\$ Probability Letters, 105 (2015), 1–5 | DOI | MR | Zbl
[42] A. Zeileis, F. Leisch, K. Hornik, Ch. Kleiber, “Strucchange: An R Package for Testing for Structural Change in Linear Regression Models”, Journal of Statistical Software, 7:2 (2002), 1–38 | DOI