Quasivarieties of nilpotent groups of axiomatic rank~$4$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2131-2141

Voir la notice de l'article provenant de la source Math-Net.Ru

We say that the axiomatic rank of a quasivariety $K$ is equal to $n$ if $K$ can be defined by a system of quasi-identities in $n$ variables and cannot be defined by any set of quasi-identities in fewer variables. If there is no such $n$, then $K$ has an infinite axiomatic rank. We prove that the set of quasivarieties of nilpotent torsion-free groups of class at most $2$ of axiomatic rank $4$ is continual.
Keywords: nilpotent group, quasivariety, variety, axiomatic rank.
@article{SEMR_2020_17_a42,
     author = {A. I. Budkin},
     title = {Quasivarieties of nilpotent groups of axiomatic rank~$4$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2131--2141},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a42/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Quasivarieties of nilpotent groups of axiomatic rank~$4$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 2131
EP  - 2141
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a42/
LA  - en
ID  - SEMR_2020_17_a42
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Quasivarieties of nilpotent groups of axiomatic rank~$4$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 2131-2141
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a42/
%G en
%F SEMR_2020_17_a42
A. I. Budkin. Quasivarieties of nilpotent groups of axiomatic rank~$4$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2131-2141. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a42/