Fusion of $2$-elements in periodic groups with finite Sylow $2$-subgroups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1953-1958.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article contributes to the study of a fusion of subsets in finite Sylow $2$-subgroups of periodic groups. We extend well-known theorems on fusion of subsets in Sylow subgroups of finite groups by Burnside and Alperin to periodic groups which contain a finite Sylow $2$-subgroup.
Keywords: periodic group, Sylow subgroup
Mots-clés : fusion.
@article{SEMR_2020_17_a41,
     author = {D. V. Lytkina and V. D. Mazurov},
     title = {Fusion of $2$-elements in periodic groups with finite {Sylow} $2$-subgroups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1953--1958},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a41/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - V. D. Mazurov
TI  - Fusion of $2$-elements in periodic groups with finite Sylow $2$-subgroups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1953
EP  - 1958
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a41/
LA  - en
ID  - SEMR_2020_17_a41
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A V. D. Mazurov
%T Fusion of $2$-elements in periodic groups with finite Sylow $2$-subgroups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1953-1958
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a41/
%G en
%F SEMR_2020_17_a41
D. V. Lytkina; V. D. Mazurov. Fusion of $2$-elements in periodic groups with finite Sylow $2$-subgroups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1953-1958. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a41/

[1] M. Hall, The Theory of Groups, Chelsea, New York, 1976 | MR | Zbl

[2] J.L. Alperin, “Sylow intersections and fusion”, J. Algebra, 6 (1967), 222–241 | DOI | MR | Zbl

[3] V.P. Shunkov, “On periodic groups with an almost regular involution”, Algebra Logic, 11:4 (1972), 260–272 | DOI | MR | Zbl

[4] V.V. Belyaev, N.F. Sesekin, “Periodic groups with almost regular involutory automorphism”, Stud. Sci. Math. Hung., 17 (1982), 137–141 | MR | Zbl

[5] V.P. Shunkov, “A periodic group with almost regular involutions”, Algebra Logic, 7:1 (1968), 66–69 | DOI | MR | Zbl

[6] B. Hartley, Th. Meixner, “Periodic groups in which the centralizer of an involution has bounded order”, J. Algebra, 64:1 (1980), 285–291 | DOI | MR | Zbl

[7] V.V. Belyaev, “Groups with an almost-regular involution”, Algebra Logic, 26:5 (1987), 315–317 | DOI | MR | Zbl

[8] D.V. Lytkina, “On the periodic groups saturated by direct products of finite simple groups II”, Sib. Math. J., 52:5 (2011), 871–883 | DOI | MR | Zbl

[9] K. Hickin, “Universal locally finite central extensions of groups”, Proc. Lond. Math. Soc., III, 52:1 (1986), 53–72 | DOI | MR | Zbl

[10] Ph. Hall, “Some constructions for locally finite groups”, J. Lond. Math. Soc., 34 (1959), 306–319 | MR | Zbl