Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a40, author = {A. S. Gerasimov}, title = {Repetition-free and infinitary analytic calculi for first-order rational {Pavelka} logic}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1869--1899}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a40/} }
TY - JOUR AU - A. S. Gerasimov TI - Repetition-free and infinitary analytic calculi for first-order rational Pavelka logic JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1869 EP - 1899 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a40/ LA - ru ID - SEMR_2020_17_a40 ER -
A. S. Gerasimov. Repetition-free and infinitary analytic calculi for first-order rational Pavelka logic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1869-1899. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a40/
[1] P. Hájek, Metamathematics of fuzzy logic, Kluwer Academic Publishers, Dordrecht, 1998 | MR | Zbl
[2] P. Cintula, P. Hájek, C. Noguera (ed.), Handbook of mathematical fuzzy logic, v. 1, College Publications, London, 2011 ; v. 2 | MR | Zbl | Zbl
[3] P. Cintula, C.G. Fermüller, C. Noguera (ed.), Handbook of mathematical fuzzy logic, v. 3, College Publications, London, 2015 | Zbl
[4] M. Baaz, G. Metcalfe, “Herbrand's theorem, Skolemization and proof systems for first-order Łukasiewicz logic”, J. Log. Comput., 20:1 (2010), 35–54 | DOI | MR | Zbl
[5] G. Metcalfe, N. Olivetti, D.M. Gabbay, Proof theory for fuzzy logics, Springer, Dordrecht, 2009 | MR | Zbl
[6] A.S. Gerasimov, “Free-variable semantic tableaux for the logic of fuzzy inequalities”, Algebra Logic, 55:2 (2016), 103–127 | DOI | MR | Zbl
[7] A.S. Gerasimov, “Infinite-valued first-order Łukasiewicz logic: hypersequent calculi without structural rules and proof search for prenex sentences”, Mat. Tr., 20:2 (2017), 3–34 (in Russian) ([8] is an English translation of this paper) | MR | Zbl
[8] A.S. Gerasimov, “Infinite-valued first-order Łukasiewicz logic: hypersequent calculi without structural rules and proof search for sentences in the prenex form”, Sib. Adv. Math., 28:2 (2018), 79–100 (this paper is an English translation of [7]) ; for errata, see Appendix A in arXiv: 1812.04861v2 | DOI | MR | Zbl
[9] B. Scarpellini, “Die nichtaxiomatisierbarkeit des unendlichwertigen prädikatenkalküls von Łukasiewicz”, J. Symb. Log., 27:2 (1963), 159–170 | DOI | MR | Zbl
[10] M.E. Ragaz, Arithmetische klassifikation von formelmengen der unendlichwertigen logik, PhD thesis, ETH Zürich, Zürich, 1981
[11] L.S. Hay, “Axiomatization of the infinite-valued predicate calculus”, J. Symb. Log., 28:1 (1964), 77–86 | DOI | MR | Zbl
[12] L.P. Belluce, C.C. Chang, “A weak completeness theorem for infinite valued first-order logic”, J. Symb. Log., 28:1 (1964), 43–50 | DOI | MR | Zbl
[13] G. Metcalfe, “Proof theory for mathematical fuzzy logic”, Handbook of mathematical fuzzy logic, v. 1, College Publications, London, 2011, 209–282 | MR | Zbl
[14] N.K. Kosovski, A.V. Tishkov, “Polynomial-time algorithms for verifying consistency of systems of strict and nonstrict linear inequalities in rationals and integers”, Current problems of modern mathematics, Collection of scientific works, v. 3, ed. V.P. Chuvakov, NII MIOO NGU, Novosibirsk, 1997, 95–100 | Zbl
[15] S.C. Kleene, Mathematical logic, Dover Publications, Mineola, NY, 2002 | MR | Zbl
[16] A.S. Troelstra, H. Schwichtenberg, Basic proof theory, Cambridge Tracts in Theoretical Computer Science, 43, 2nd ed., Cambridge University Press, Cambridge, 2000 | MR | Zbl
[17] G. Gentzen, “Untersuchungen über das logische schliessen. I; II”, Math. Zeitschrift, 39 (1934), 176–210 ; 405–431 | DOI | MR | Zbl | Zbl
[18] A.S. Gerasimov, Comparing several calculi for first-order infinite-valued Łukasiewicz logic, 2018, arXiv: 1812.05297 | MR
[19] V. Nigam, E. Pimentel, G. Reis, “An extended framework for specifying and reasoning about proof systems”, J. Log. Comput., 26:2 (2016), 539–576 | DOI | MR | Zbl
[20] C. Olarte, E. Pimentel, C. Rocha, “Proving structural properties of sequent systems in rewriting logic”, Lect. Notes Comp. Sci., 11152, ed. V. Rusu, 2018, 115–135 | DOI | MR