Repetition-free and infinitary analytic calculi for first-order rational Pavelka logic
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1869-1899

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an analytic hypersequent calculus $\textnormal{G}^3\textnormal{\L}\forall$ for first-order infinite-valued Łukasiewicz logic $\textnormal{\L}\forall$ and for an extension of it, first-order rational Pavelka logic $\textnormal{RPL}\forall$; the calculus is intended for bottom-up proof search. In $\textnormal{G}^3\textnormal{\L}\forall$, there are no structural rules, all the rules are invertible, and designations of multisets of formulas are not repeated in any premise of the rules. The calculus $\textnormal{G}^3\textnormal{\L}\forall$ proves any sentence that is provable in at least one of the previously known analytic calculi for $\textnormal{\L}\forall$ or $\textnormal{RPL}\forall$, including Baaz and Metcalfe's hypersequent calculus $\textnormal{G}\textnormal{\L}\forall$ for $\textnormal{\L}\forall$. We study proof-theoretic properties of $\textnormal{G}^3\textnormal{\L}\forall$ and thereby provide foundations for proof search algorithms. We also give the first correct proof of the completeness of the $\textnormal{G}\textnormal{\L}\forall$-based infinitary calculus for prenex $\textnormal{\L}\forall$-sentences, and establish the completeness of a $\textnormal{G}^3\textnormal{\L}\forall$-based infinitary calculus for prenex $\textnormal{RPL}\forall$-sentences.
Keywords: many-valued logic, mathematical fuzzy logic, first-order rational Pavelka logic, proof theory, hypersequent calculus, proof search, infinitary calculus.
Mots-clés : first-order infinite-valued Łukasiewicz logic
@article{SEMR_2020_17_a40,
     author = {A. S. Gerasimov},
     title = {Repetition-free and infinitary analytic calculi for first-order rational {Pavelka} logic},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1869--1899},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a40/}
}
TY  - JOUR
AU  - A. S. Gerasimov
TI  - Repetition-free and infinitary analytic calculi for first-order rational Pavelka logic
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1869
EP  - 1899
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a40/
LA  - ru
ID  - SEMR_2020_17_a40
ER  - 
%0 Journal Article
%A A. S. Gerasimov
%T Repetition-free and infinitary analytic calculi for first-order rational Pavelka logic
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1869-1899
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a40/
%G ru
%F SEMR_2020_17_a40
A. S. Gerasimov. Repetition-free and infinitary analytic calculi for first-order rational Pavelka logic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1869-1899. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a40/