On algebraic isomorphisms of rational cohomology of a K\"unneman compactification of the N\'eron minimal model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 89-125

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Grothendieck standard conjecture of Lefschetz type holds for rational cohomology of degree 2 or 3 of a Künnemann compactification of the Néron minimal model of an absolutely simple principally polarized Abelian variety over the field of rational functions of a smooth projective curve under certain restrictions on the ring of endomorphisms of the Abelian variety.
Keywords: Abelian variety, Néron minimal model, Künnemann compactification, Grothendieck standard conjecture of Lefschetz type.
@article{SEMR_2020_17_a4,
     author = {S. G. Tankeev},
     title = {On algebraic isomorphisms of rational cohomology of a {K\"unneman} compactification of the {N\'eron} minimal model},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {89--125},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a4/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On algebraic isomorphisms of rational cohomology of a K\"unneman compactification of the N\'eron minimal model
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 89
EP  - 125
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a4/
LA  - en
ID  - SEMR_2020_17_a4
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On algebraic isomorphisms of rational cohomology of a K\"unneman compactification of the N\'eron minimal model
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 89-125
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a4/
%G en
%F SEMR_2020_17_a4
S. G. Tankeev. On algebraic isomorphisms of rational cohomology of a K\"unneman compactification of the N\'eron minimal model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 89-125. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a4/