On algebraic isomorphisms of rational cohomology of a K\"unneman compactification of the N\'eron minimal model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 89-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Grothendieck standard conjecture of Lefschetz type holds for rational cohomology of degree 2 or 3 of a Künnemann compactification of the Néron minimal model of an absolutely simple principally polarized Abelian variety over the field of rational functions of a smooth projective curve under certain restrictions on the ring of endomorphisms of the Abelian variety.
Keywords: Abelian variety, Néron minimal model, Künnemann compactification, Grothendieck standard conjecture of Lefschetz type.
@article{SEMR_2020_17_a4,
     author = {S. G. Tankeev},
     title = {On algebraic isomorphisms of rational cohomology of a {K\"unneman} compactification of the {N\'eron} minimal model},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {89--125},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a4/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On algebraic isomorphisms of rational cohomology of a K\"unneman compactification of the N\'eron minimal model
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 89
EP  - 125
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a4/
LA  - en
ID  - SEMR_2020_17_a4
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On algebraic isomorphisms of rational cohomology of a K\"unneman compactification of the N\'eron minimal model
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 89-125
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a4/
%G en
%F SEMR_2020_17_a4
S. G. Tankeev. On algebraic isomorphisms of rational cohomology of a K\"unneman compactification of the N\'eron minimal model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 89-125. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a4/

[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebr. Geom., Bombay Colloq. (1968), Oxford Univ. Press, London, 1969, 193–199 | MR | Zbl

[2] S.L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, Advanced Studies Pure Math., 3, North-Holland, Amsterdam; Masson, Paris, 1968, 359–386 | MR | Zbl

[3] S.G. Tankeev, “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. Math., 67:3 (2003), 597–635 | DOI | MR | Zbl

[4] S. G. Tankeev, “On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension”, Izv. Math., 69:1 (2005), 143–162 | DOI | MR | Zbl

[5] S.G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655 | DOI | MR | Zbl

[6] D. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl

[7] S.G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI | MR | Zbl

[8] D. Arapura, “Motivation for Hodge cycles”, Adv. Math., 207:2 (2006), 762–781 | DOI | MR | Zbl

[9] F. Charles, E. Markman, “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of $K3$ surfaces”, Compos. Math., 149:3 (2013), 481–494 | DOI | MR | Zbl

[10] O.V. Nikol'skaya, “On algebraic cycles on a fibre product of families of $K3$ surfaces”, Izv. Math., 77:1 (2013), 143–162 | DOI | MR | Zbl

[11] O.V. Nikol'skaya, “On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus 1”, Modeling and analysis of information systems, 23:4 (2016), 440–465 | DOI | MR

[12] S.G. Tankeev, “On the standard conjecture and the existence of the Chow–Lefschetz decomposition for complex projective varieties”, Izv. Math., 79:1 (2015), 177–207 | DOI | MR | Zbl

[13] S.G. Tankeev, “On the inductive approach to the standard conjecture for a fibred complex variety with strong semi-stable degeneracies”, Izv. Math., 81:6 (2017), 1253–1285 | DOI | MR | Zbl

[14] F. Charles, “Remarks on the Lefschetz standard conjecture and hyperkähler varieties”, Comment. Math. Helv., 88:2 (2013), 449–468 | DOI | MR | Zbl

[15] A. Grothendieck, “Modèles de Néron et monodromie”, Sèmin. Gèom. Algèbrique, Bois-Marie 1967–1969, SGA 7 I, Exp. IX, Lect. Notes Math., 288, Springer-Verlag, Berlin–Heidelberg–New York, 1972, 313–523 | DOI | Zbl

[16] K. Künnemann, “Height pairings for algebraic cycles on abelian varieties”, Ann. Sci. Éc. Norm. Supér., (4), 34:4 (2001), 503–523 | DOI | MR | Zbl

[17] K. Künnemann, “Projective regular models for Abelian varieties, semistable reduction, and the height pairing”, Duke Math. J., 95:1 (1998), 161–212 | DOI | MR | Zbl

[18] P. Deligne, “Théorie de Hodge. II”, Publ. Math. Inst. Étud. Sci., 40, no. 1, 1971, 5–57 | DOI | MR | Zbl

[19] B.B. Gordon, “A survey of the Hodge conjecture for Abelian varieties”: J.D. Lewis, A survey of the Hodge conjecture, CRM Monograph Series, 10, second edition, Centre de Recherches Mathématiques Université de Montréal, 1999, 297–356 | MR | Zbl

[20] N. Bourbaki, Groupes et algèbres de Lie, Chaps. 1–8, Actualités Sci. Indust., 1285, Hermann, Paris, 1971 ; 1349, 1972 ; 1337, 1968 ; 1364, 1975 | MR | Zbl | Zbl | Zbl | Zbl

[21] N. Bourbaki, Algebre. Livre II. Modules, rings, forms. Chapitre IX, Hermann, Paris, 1959 | MR | Zbl

[22] Yu.G. Zarhin, “Weights of simple Lie algebras in cohomology of algebraic varieties”, Math. USSR, Izv., 24:2 (1985), 245–281 | DOI | MR | Zbl

[23] D. Mumford, “A note on Shimura's paper: "Discontinuous Groups and Abelian Varieties"”, Math. Ann., 181:4 (1969), 345–351 | DOI | MR | Zbl

[24] P. Deligne, “Théorie de Hodge. III”, Publ. Math. Inst. Étud. Sci., 44, 1974, 5–77 | DOI | MR | Zbl

[25] G.A. Mustafin, “Families of algebraic varieties and invariant cycles”, Math. USSR, Izv., 27:2 (1986), 251–278 | DOI | MR | Zbl

[26] P. Deligne, “Variétés de Shimura$:$ interprétation modulaires et techniques de construction de modèles canoniques”, Proc. Symp. Pure Math., 33:2 (1979), 247–290 | DOI | MR | Zbl

[27] S.G. Tankeev, “Cycles on Abelian varieties and exceptional numbers”, Izv. Math., 60:2 (1996), 391–424 | DOI | MR | Zbl

[28] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958 | MR | Zbl

[29] J.S. Milne, Étale cohomology, Princeton Univ. Press, Princeton, New Jersey, 1980 | MR | Zbl

[30] C. Voisin, Hodge theory and complex algebraic geometry, v. I, II, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[31] R.O. Wells, Differential analysis on complex manifolds, Prentice-Hall, Inc., N.J., 1973 | MR | Zbl

[32] C.H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl

[33] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. Math., 109 (1979), 415–476 | DOI | MR | Zbl

[34] N. Bourbaki, Éléments de mathématique. Algèbre. Ch. X: Algèbre homologique, Masson, Paris, 1980 | MR | Zbl

[35] W. Schmid, “Variation of Hodge structure: the sigularities of the period mapping”, Invent. Math., 22 (1973), 211–319 | DOI | MR | Zbl

[36] E.H. Spanier, Algebraic topology, McGraw-Hill, New York–San Fransisco–St. Louis–Toronto–London–Sydney, 1966 | MR | Zbl

[37] N. Bourbaki, Éléments de mathématique, Livre II, Algèbre. Ch. I–III, Hermann, Paris, 1948 | MR | Zbl

[38] S.G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Math., 74:1 (2010), 167–187 | DOI | MR | Zbl

[39] Vic.S. Kulikov, P.F. Kurchanov, “Complex algebraic varieties: periods of integrals and Hodge structures”, Algebraic geometry, III, Encycl. Math. Sci., 36, Springer, Berlin, 1998, 1–217 ; 263–270 | MR | Zbl

[40] S. Lang, Abelian varieties, Springer-Verlag, New York etc., 1983 | MR | Zbl

[41] Ph. Griffiths, J. Harris, Principles of algebraic geometry, John Wiley, New York, 1978 | MR | Zbl

[42] J.D. Lewis, A survey of the Hodge conjecture, CRM Monograph Series, 10, 2nd ed., Providence, RI, 1999 | MR | Zbl

[43] D. Abramovich, K. Karu, K. Matsuki, J. Wlodarczyk, “Torification and factorization of birational maps”, J. Am. Math. Soc., 15:3 (2002), 531–572 | DOI | MR | Zbl

[44] W. Fulton, “Equivariant cohomology in algebraic geometry. Appendix A. Algebraic topology”, Eilenberg lectures, notes by D. Anderson (Columbia Univ., 2007), 2007, 13 pp. http://w3.impa.br/d̃ave/eilenberg

[45] B.H. Lian, A. Todorov, Sh.-T. Yau, “Maximal unipotent monodromy for complete intersection CY manifolds”, Am. J. Math., 127:1 (2005), 1–50 | DOI | MR | Zbl

[46] D. Mumford, Lectures on curves on an algebraic surface, Princeton, N.J., 1966 | MR | Zbl

[47] Yu.I. Manin, Cubic forms, North-Holland, Amsterdam–London, 1974 | MR | Zbl