Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a37, author = {A. N. Rybalov}, title = {On the generic existential theory of finite graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1710--1714}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a37/} }
A. N. Rybalov. On the generic existential theory of finite graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1710-1714. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a37/
[1] M. Garey, D. Johnson, Computers and Intractability, Freeman Co, San Francisco, 1979 | MR | Zbl
[2] Y.V. Glebsky, D.I. Kogan, M.I. Liogonky, V.A. Talanov, “Volume and fraction of satisfiability of formulas of the lower predicate calculus”, Kibernetika, 1969:2 (1969), 17–27 | MR
[3] E.Y. Daniyarova, A.G. Myasnikov, V.N. Remeslennikov, Algebraic geometry over algebraic structures, SB RAS, Novosibirsk, 2016 | MR
[4] I.A. Lavrov, “Effective inseparability of the set of identically true and finitely refutable formulas of some elementary theories”, Algebra logika, 2:1 (1963), 5–18 | MR | Zbl
[5] A.G. Myasnikov, V.N. Remeslennikov, “Generic theories as a method for approximating elementary theories”, Algebra Logika, 53:6 (2015), 512–519 | DOI | MR | Zbl