Discrete time stochastic and deterministic Petri box calculus dtsdPBC
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1598-1679

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose dtsdPBC, an extension with deterministically timed multiactions of discrete time stochastic and immediate Petri box calculus (dtsiPBC), previously presented by I.V. Tarasyuk, H. Macià and V. Valero. dtsdPBC enhances the expressiveness of dtsiPBC and extends the application area of the associated specification and analysis techniques. In dtsdPBC, non-negative integers are used to specify fixed (including zero) time delays of deterministic multiactions. The step operational semantics of the calculus is constructed via labeled probabilistic transition systems. The Petri net denotational semantics of the calculus is defined on the basis of dtsd-boxes, a subclass of novel labeled discrete time stochastic Petri nets with deterministic transitions (LDTSDPNs). We also define step stochastic bisimulation equivalence of the algebraic expressions, used to compare the qualitative and quantitative behaviour of the specified processes. The consistency of the operational and denotational semantics of dtsdPBC up to that bisimulation equivalence is established. The interrelations of the mentioned equivalence with other behavioural notions of the calculus are investigated. A series of examples that construct the transition systems and dtsd-boxes for the expressions with different types of multiactions and operations demonstrates both the specification capabilities and semantic features of the new calculus.
Keywords: stochastic process algebra, stochastic Petri net, Petri box calculus, discrete time, deterministic multiaction, transition system, operational semantics, stochastic transition, deterministic transition, dtsd-box, denotational semantics, stochastic bisimulation.
Mots-clés : stochastic multiaction
@article{SEMR_2020_17_a36,
     author = {I. V. Tarasyuk},
     title = {Discrete time stochastic and deterministic {Petri} box calculus {dtsdPBC}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1598--1679},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a36/}
}
TY  - JOUR
AU  - I. V. Tarasyuk
TI  - Discrete time stochastic and deterministic Petri box calculus dtsdPBC
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1598
EP  - 1679
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a36/
LA  - en
ID  - SEMR_2020_17_a36
ER  - 
%0 Journal Article
%A I. V. Tarasyuk
%T Discrete time stochastic and deterministic Petri box calculus dtsdPBC
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1598-1679
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a36/
%G en
%F SEMR_2020_17_a36
I. V. Tarasyuk. Discrete time stochastic and deterministic Petri box calculus dtsdPBC. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1598-1679. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a36/