On the Wedderburn's principal theorem in right alternative superalgebras of capacity~$1$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1571-1579.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Wedderburn's principal theorem is proved for finite dimensional right alternative superalgebras under the following restrictions: 1) the even part is representable as the sum of a simple noncommutative subalgebra and radical; 2) the superalgebra is an alternative bimodule over its even part.
Keywords: right alternative superalgebra, nilpotent radical.
@article{SEMR_2020_17_a35,
     author = {O. V. Shashkov},
     title = {On the {Wedderburn's} principal theorem in right alternative superalgebras of capacity~$1$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1571--1579},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a35/}
}
TY  - JOUR
AU  - O. V. Shashkov
TI  - On the Wedderburn's principal theorem in right alternative superalgebras of capacity~$1$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1571
EP  - 1579
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a35/
LA  - ru
ID  - SEMR_2020_17_a35
ER  - 
%0 Journal Article
%A O. V. Shashkov
%T On the Wedderburn's principal theorem in right alternative superalgebras of capacity~$1$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1571-1579
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a35/
%G ru
%F SEMR_2020_17_a35
O. V. Shashkov. On the Wedderburn's principal theorem in right alternative superalgebras of capacity~$1$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1571-1579. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a35/

[1] E.I. Zel'manov, I.P. Shestakov, “Prime alternative superalgebras and the nilpotence of the radical of a free alternative algebra”, Izv. AN SSSR, Ser. Mat., 54:4 (1990), 676–693 | MR | Zbl

[2] C.T.C. Wall, “Graded Brauer groups”, J. Reine Angew. Math., 213 (1964), 187–199 | MR | Zbl

[3] I.P. Shestakov, “Prime alternative superalgebras of arbitrary characteristic”, Algebra Logic, 36:6 (1997), 389–412 | DOI | MR | Zbl

[4] I.P. Shestakov, “Simple $(-1,1)$-superalgebras”, Algebra Logic, 37:6 (1998), 411–422 | DOI | MR | Zbl

[5] A.A. Albert, “On right alternative algebras”, Ann. Math., 50:2 (1949), 318–328 | DOI | MR | Zbl

[6] L.S.I. Murakami, S.V. Pchelintsev, O.V. Shashkov, “Finite-dimensional right alternative superalgebras with a semisimple strongly alternative even part”, J. Algebra, 528 (2019), 150–176 | DOI | MR | Zbl

[7] S.V. Pchelintsev, O.V, Shashkov, “Simple finite-dimensional right-alternative superalgebras of abelian type of characteristic zero”, Izv. Math., 79:3 (2015), 554–580 | DOI | MR | Zbl

[8] S.V. Pchelintsev, O.V, Shashkov, “Simple right alternative superalgebras of abelian type whose even part is a field”, Izv. Math., 80:6 (2016), 1231–1241 | DOI | MR | Zbl

[9] S.V. Pchelintsev, O.V, Shashkov, “Simple finite-dimensional right-alternative superalgebras with semisimple strongly associative even part”, Sb. Math., 208:2 (2017), 223–236 | DOI | MR | Zbl

[10] S.V. Pchelintsev, O.V, Shashkov, “Simple finite-dimensional right-alternative unital superalgebras with strongly associative even part”, Sb. Math., 208:4 (2017), 531–545 | DOI | MR | Zbl

[11] S.V. Pchelintsev, O.V, Shashkov, “Simple finite-dimensional right alternative superalgebras with unitary even part over a field of characteristic 0”, Math. Notes, 100:4 (2016), 589–596 | DOI | MR | Zbl

[12] S.V. Pchelintsev, O.V, Shashkov, “Simple finite-dimensional right-alternative unital superalgebras with associative-commutative even part over a field of characteristic zero”, Izv. Math., 82:3 (2018), 578–595 | DOI | MR | Zbl

[13] O.V, Shashkov, “Right alternative superalgebras of capacity 1 with a strongly alternative even part”, Algebra Logic (to appear)

[14] R.D. Schafer, An introduction to nonassociative algebras, Pure and applied mathematics, 22, Academic Press, New York–London, 1966 | MR | Zbl

[15] M. Zorn, “Alternative rings and related questions i: existence of the radical”, Ann. Math., 42:2 (1941), 676–686 | DOI | MR | Zbl

[16] M. Zorn, “Theorie der alternativen Ringe”, Abhandlungen Hamburg, 8 (1931), 123–147 | DOI | MR | Zbl

[17] N. Jacobson, “Structure of alternative and Jordan bimodules”, Osaka Math. J., 6 (1954), 1–71 | MR | Zbl