The property of being a model complete theory is preserved by Cartesian extensions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1540-1551.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cartesian-quotient extensions of theories constitute a most common class of finitary transformation methods for first-order combinatorics. In this paper, some technical properties of classes of algebraic Cartesian and algebraic Cartesian-quotient interpretations of theories are studied. It is established that any algebraic Cartesian interpretation preserves the property of being a model complete theory; besides, an example of an algebraic Cartesian-quotient interpretation of theories is given, which does not preserve the model-completeness property.
Keywords: first-order logic, incomplete theory, Tarski-Lindenbaum algebra, model-theoretic property, computable isomorphism, Cartesian interpretation, model completeness.
@article{SEMR_2020_17_a34,
     author = {M. G. Peretyat'kin},
     title = {The property of being a model complete theory is preserved by {Cartesian} extensions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1540--1551},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a34/}
}
TY  - JOUR
AU  - M. G. Peretyat'kin
TI  - The property of being a model complete theory is preserved by Cartesian extensions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1540
EP  - 1551
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a34/
LA  - en
ID  - SEMR_2020_17_a34
ER  - 
%0 Journal Article
%A M. G. Peretyat'kin
%T The property of being a model complete theory is preserved by Cartesian extensions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1540-1551
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a34/
%G en
%F SEMR_2020_17_a34
M. G. Peretyat'kin. The property of being a model complete theory is preserved by Cartesian extensions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1540-1551. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a34/

[1] W. Hanf, “The Boolean algebra of Logic”, Bull. Am. Math. Soc., 81 (1975), 587–589 | DOI | MR | Zbl

[2] W. Hanf, D. Myers, “Boolean sentence algebras: Isomorphism constructions”, J. Symb. Log., 48:2 (1983), 329–338 | DOI | MR | Zbl

[3] W. Hanf, “Model-theoretic methods in the study of elementary logic”, Theory of Models, Proc. 1963 Int. Symp. Berkeley, North-Holland, Amsterdam, 1965, 132–145 | MR | Zbl

[4] W. Hanf, “Primitive Boolean algebras”, Proc. Tarski Symp. (Berkeley, 1971), Proc. Symp. Pure Math., 25, 1974, 75–90 | DOI | MR | Zbl

[5] D. Myers, “Lindenbaum-Tarski algebras”, Handbook of Boolean algebras, eds. J.D. Monk, R. Bonnet, North-Holland, Amsterdam etc, 1989, 1167–1195 | MR | Zbl

[6] D. Myers, “Hanf's eulogy, 9/11/89”, Mod. Log., 1:4 (1991), 355–357 | MR | Zbl

[7] D. Myers, “An interpretive isomorphism between binary and ternary relations”, Structures in Logic and Computer Science, A Selection of Essays in Honor of Andrzej Ehrenfeucht, 1997, 84–105 | DOI | MR | Zbl

[8] M.G. Peretyat'kin, “Semantic universal classes of models”, Algebra Logic, 30:4 (1991), 271–292 | DOI | MR | Zbl

[9] M.G. Peretyat'kin, “Analogues of Rice's theorem for semantic classes of propositions”, Algebra Logic, 30:5 (1991), 332–348 | DOI | MR | Zbl

[10] M.G. Peretyat'kin, “Hanf's isomorphisms between predicate calculi of finite rich signatures preserving all real model-theoretic properties”, International conference on algebra and logic Maltsev's Meeting (August, 19–23, 2019, Novosibirsk), 202 | Zbl

[11] M.G. Peretyat'kin, “There is a virtual isomorphism between any two undecidable predicate calculi of finite signatures”, International conference on algebra and logic Maltsev's Meeting (21–25 November, 2016, Novosibirsk), 208

[12] M.G. Peretyat'kin, “First-order combinatorics and model-theoretic properties that can be distinct for mutually interpretable theories”, Sib. Adv. Math., 26:3 (2016), 196–214 | DOI | MR | Zbl

[13] W. Hodges, A shorter model theory, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[14] H.jun. Rogers, Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York, 1967 | MR | Zbl

[15] Yu.L. Ershov, S.S. Goncharov, Constructive models, Siberian School of Algebra and Logic, Consultants Bureau, New York, 2000 | MR | Zbl

[16] M.G. Peretyat'kin, Finitely axiomatizable theories, Siberian School of Algebra and Logic, Consultants Bureau, New York, 1997 | MR | Zbl

[17] A. Robinson, Introduction to model theory and to the metamathematics of algebra, North-Holland, Amsterdam, 1963 | MR | Zbl

[18] J.R. Shoenfield, Mathematical Logic, Addison-Wesley, Massachusetts, 1967 | MR | Zbl

[19] M.G. Peretyat'kin, “Invertible multi-dimensional interpretations versus virtual isomorphisms of first-order theories”, Mathematical Journal, 16:4 (2016), 166–203

[20] L. Szczerba, “Interpretability of elementary theories”, Logic, Found. Math. Comput. Theory, Proc. 5th int. Congr. (London/Ontario 1975), v. 1, 1977, 129–145 | DOI | MR | Zbl

[21] M.G. Peretyat'kin, “Finitely axiomatizable theories and similarity relations”, American Mathematical Society. Transl., Ser. 2, 195 (1999), 309–346 | MR | Zbl

[22] J.T. Baldwin, Fundamentals of stability theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin etc, 1988 | DOI | MR | Zbl

[23] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam etc, 1990 | MR | Zbl

[24] B. Poizat, A course in model theory. An introduction to contemporary mathematical logic, Springer-Verlag, New York, 2000 | MR | Zbl

[25] D. Marker, Model Theory: An Introduction, Springer-Verlag, New York, 2002 | MR | Zbl

[26] M.G. Peretyat'kin, “A technical prototype of the finite signature reduction procedure for the algebraic mode of definability”, Kazakh Mathematical Journal, 19:2 (2019), 78–104