The property of being a model complete theory is preserved by Cartesian extensions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1540-1551

Voir la notice de l'article provenant de la source Math-Net.Ru

Cartesian-quotient extensions of theories constitute a most common class of finitary transformation methods for first-order combinatorics. In this paper, some technical properties of classes of algebraic Cartesian and algebraic Cartesian-quotient interpretations of theories are studied. It is established that any algebraic Cartesian interpretation preserves the property of being a model complete theory; besides, an example of an algebraic Cartesian-quotient interpretation of theories is given, which does not preserve the model-completeness property.
Keywords: first-order logic, incomplete theory, Tarski-Lindenbaum algebra, model-theoretic property, computable isomorphism, Cartesian interpretation, model completeness.
@article{SEMR_2020_17_a34,
     author = {M. G. Peretyat'kin},
     title = {The property of being a model complete theory is preserved by {Cartesian} extensions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1540--1551},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a34/}
}
TY  - JOUR
AU  - M. G. Peretyat'kin
TI  - The property of being a model complete theory is preserved by Cartesian extensions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1540
EP  - 1551
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a34/
LA  - en
ID  - SEMR_2020_17_a34
ER  - 
%0 Journal Article
%A M. G. Peretyat'kin
%T The property of being a model complete theory is preserved by Cartesian extensions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1540-1551
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a34/
%G en
%F SEMR_2020_17_a34
M. G. Peretyat'kin. The property of being a model complete theory is preserved by Cartesian extensions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1540-1551. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a34/