On minimal bases in full partial ultraclone of rank~$2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1478-1487.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of classification of minimal bases of multifunctions in full partial ultraclone of rank $2$ is considered. A description of all types of minimal bases is obtained using the classification of multifunctions with respect to belonging to the maximal partial ultraclones.
Keywords: partial function, multifunction, many-valued logic, partial ultraclone.
Mots-clés : superposition
@article{SEMR_2020_17_a33,
     author = {S. A. Badmaev and I. K. Sharankhaev},
     title = {On minimal bases in full partial ultraclone of rank~$2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1478--1487},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a33/}
}
TY  - JOUR
AU  - S. A. Badmaev
AU  - I. K. Sharankhaev
TI  - On minimal bases in full partial ultraclone of rank~$2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1478
EP  - 1487
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a33/
LA  - ru
ID  - SEMR_2020_17_a33
ER  - 
%0 Journal Article
%A S. A. Badmaev
%A I. K. Sharankhaev
%T On minimal bases in full partial ultraclone of rank~$2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1478-1487
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a33/
%G ru
%F SEMR_2020_17_a33
S. A. Badmaev; I. K. Sharankhaev. On minimal bases in full partial ultraclone of rank~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1478-1487. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a33/

[1] S.A. Badmaev, “On the classes of Boolean functions generated by maximal partial ultraclones”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 27 (2019), 3–14 | MR | Zbl

[2] S.A. Badmaev, I.K. Sharankhaev, “On the classes of partial functions generated by maximal partial ultraclones”, Sib. Elektron. Mat. Izv., 17 (2020), 32–46 | DOI | MR | Zbl

[3] S.A. Badmaev, “Classification of Hyperfunctions of Rank 2 with Respect to Membership in the Maximal Partial Ultraclones”, J. Sib. Fed. Univ. Math. Phys., 12:5 (2019), 645–652 | MR

[4] V.I. Panteleyev, “On two maximal multiclones and partial ultraclones”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 5:4 (2012), 46–53 | Zbl

[5] S.A. Badmaev, I.K. Sharankhaev, “On maximal clones of partial ultrafunctions on a two-element set”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 16 (2016), 3–18 | MR | Zbl

[6] S.A. Badmaev, “A Completeness Criterion of Set of Multifunctions in Full Partial Ultraclone of Rank 2”, Sib. Elektron. Mat. Izv., 15 (2018), 450–474 | MR | Zbl