Stone lattices of multiply $\Omega$-canonical Fitting classes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1280-1287

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a lattice with $0$ and $1$. A distributive lattice $L$ with pseudocomplements, each element of which satisfies an identity $a^{\circ}\vee (a^{\circ} )^{\circ} =1$, where $a^{\circ}$ is a pseudocomplement of an element $a$, is called a Stone lattice. The article describes multiply $\Omega$-canonical Fitting classes with a Stone lattice of multiply $\Omega$-canonical Fitting subclasses. It is shown that such Fitting classes are subclasses of the class $\mathfrak{D}_\Omega =\times_{A \in \Omega} \mathfrak{G}_A=(B_1 \times B_2 \times \dots \times B_n$ : $ B_i \in \mathfrak{G}_{A_i}$ for some $A_i\in\Omega$, $i\in\{ 1,2,\dots,n \}$, $n\in\mathbb N$).
Keywords: finite group, Fitting class, $\Omega$-canonical Fitting class, lattice of Fitting classes, Stone lattice.
@article{SEMR_2020_17_a31,
     author = {O. V. Kamozina},
     title = {Stone lattices of multiply $\Omega$-canonical {Fitting} classes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1280--1287},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a31/}
}
TY  - JOUR
AU  - O. V. Kamozina
TI  - Stone lattices of multiply $\Omega$-canonical Fitting classes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1280
EP  - 1287
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a31/
LA  - en
ID  - SEMR_2020_17_a31
ER  - 
%0 Journal Article
%A O. V. Kamozina
%T Stone lattices of multiply $\Omega$-canonical Fitting classes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1280-1287
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a31/
%G en
%F SEMR_2020_17_a31
O. V. Kamozina. Stone lattices of multiply $\Omega$-canonical Fitting classes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1280-1287. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a31/