Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a3, author = {V. A. Roman'kov}, title = {Primitive elements and automorphisms of the free metabelian group of rank $3$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {61--76}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a3/} }
V. A. Roman'kov. Primitive elements and automorphisms of the free metabelian group of rank $3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 61-76. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a3/
[1] S. Bachmuth, “Automorphisms of free metabelian groups”, Trans. Amer. Math. Soc., 118 (1965), 93–104 | DOI | MR | Zbl
[2] O. Chein, “IA-automorphisms of free and free metabelian groups”, Comm. Pure Appl. Math., 21 (1968), 605–629 | DOI | MR | Zbl
[3] S. Bachmuth, H.Y. Mochizuki, “Automorphisms of a class of metabelian groups II”, Trans. Amer. Math. Soc., 127 (1967), 294–301 | DOI | MR | Zbl
[4] V.A. Roman'kov, “Primitive elements of free groups of rank 3”, Math. USSR Sb., 73:2 (1992), 445–454 | DOI | MR | Zbl
[5] A.N. Kabanov, V.A. Roman’kov, “Strictly nontame primitive elements of the free metabelian Lie algebra of rank 3”, Sib. Mat. Zh., 50:1 (2009), 50–66 | DOI | MR | Zbl
[6] S. Bachmuth, H.Y. Mochizuki, “Aut$(F) \rightarrow$ Aut$(F/F'')$ is surjective for $F$ free of rank $\geq 4$”, Trans. Amer. Math. Soc., 292 (1985), 81–101 | MR | Zbl
[7] V.A. Roman'kov, “The group of matrices of residuals”, Correlation problems of abstract and applied algebra, Collect. sci., Works, Novosibirsk, 1985, 35–52 | Zbl
[8] V.A. Roman'kov, “The automorphism groups of free metabelian groups”, Correlation problems of abstract and applied algebra, Collect. sci., Works, Novosibirsk, 1985, 53–81 | Zbl
[9] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, John Wiley and Sons, New York–London–Sydney, 1966 | MR | Zbl
[10] R.C. Lyndon, P.E. Shupp, Combinatorial group theory, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl
[11] M. Hall, Jr, The Theory of Groups, Macmillan, New York, 1959 | MR | Zbl
[12] A.A. Suslin, “On the structure of the special linear group over polynomial rings”, Math. USSR Izv., 11 (1977), 221–238 | DOI | MR | Zbl
[13] S. Bachmuth, H.Y. Mochizuki, “E$_2 \not=$ SL$_2$ for most Laurent polynomial rings”, Amer. J. Math., 104 (1982), 1181–1189 | DOI | MR | Zbl
[14] S. Bachmuth, H.Y. Mochizuki, “The non-finite generation of Aut$(G), \ G$ free metabelian of rank $3$”, Trans. Amer. Math. Soc., 270 (1982), 693–700 | MR | Zbl
[15] R.H. Fox, “Free differential calculus I – Derivation in the free group ring”, Ann. Math., 57 (1953), 547–560 | DOI | MR | Zbl
[16] R.H. Crowell, R.H. Fox, Introduction to knot theory, Ginn and company, Boston–New York–Chicago–Atlanta–Dallas–Palo Alto–Toronto, 1963 | MR | Zbl
[17] E.I. Timoshenko, Endomorphisms and universal theories of solvable groups, Novosibirsk State Technical University, Novosibirsk, 2011 (in Russian)
[18] V.A. Roman'kov, Essays in algebra and cryptology: Solvable groups, OmSU Publisher, Omsk, 2017 (in Russian)
[19] R.C. Lyndon, “Cohomology theory of groups with a single defining relation”, Ann. Math., 52 (1950), 650–665 | DOI | MR | Zbl
[20] J.S. Birman, “An inverse function theorem for free groups”, Proc. Am. Math. Soc., 41 (1973), 634–638 | DOI | MR | Zbl
[21] M.S. Montgomery, “Left and right inverses in group algebras”, Bull. Am. Math. Soc., 75 (1969), 539–540 | DOI | MR | Zbl
[22] U.U. Umirbaev, “Primitive elements of free groups”, Russ. Math. Surv., 49:2 (1994), 184–185 | DOI | MR | Zbl
[23] E.I. Timoshenko, On the inclusion of given elements into a basis of a free metabelian group, 2699-V, VINITI, Novosibirsk, 1988 (in Russian)
[24] V.A. Roman'kov, “Criteria for the primitivity of a system of elements of a free metabelian group”, Ukr. Mat. Zh., 43:7–8 (1991), 996–1002 | MR | Zbl
[25] W. Magnus, “On a theorem of Marshall Hall”, Ann. Math., 40 (1939), 764–768 | DOI | MR | Zbl
[26] M.J. Evans, “Primitive elements in the free metabelian group of rank $3$”, J. Algebra, 220:2 (1999), 475–491 | DOI | MR | Zbl
[27] C.K. Gupta, N.D. Gupta, V.A. Roman'kov, “Primitivity in free groups and free metabelian groups”, Can. J. Math., 44:3 (1992), 516–523 | DOI | MR | Zbl
[28] M.J. Evans, “Presentations of groups involving more generators than are necessary”, Proc. Lond. Math. Soc., 67 (1993), 106–126 | DOI | MR | Zbl
[29] M.J. Evans, “Presentations of the free metabelian group of rank 2”, Canadian Math. Bull., 37:4 (1994), 468–472 | DOI | MR | Zbl