Primitive elements and automorphisms of the free metabelian group of rank $3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 61-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this article is twofold. On the one hand, we give an overview of the known results on primitive elements and automorphisms of a very specific free metabelian group $M_3$ of rank $3$. On the other hand, we present new results, at the same time showing the work of non-standard research tools of studying of this group.
Keywords: free metabelian group, primitive element.
Mots-clés : matrix group
@article{SEMR_2020_17_a3,
     author = {V. A. Roman'kov},
     title = {Primitive elements and automorphisms of the free metabelian group of rank $3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {61--76},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a3/}
}
TY  - JOUR
AU  - V. A. Roman'kov
TI  - Primitive elements and automorphisms of the free metabelian group of rank $3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 61
EP  - 76
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a3/
LA  - en
ID  - SEMR_2020_17_a3
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%T Primitive elements and automorphisms of the free metabelian group of rank $3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 61-76
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a3/
%G en
%F SEMR_2020_17_a3
V. A. Roman'kov. Primitive elements and automorphisms of the free metabelian group of rank $3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 61-76. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a3/

[1] S. Bachmuth, “Automorphisms of free metabelian groups”, Trans. Amer. Math. Soc., 118 (1965), 93–104 | DOI | MR | Zbl

[2] O. Chein, “IA-automorphisms of free and free metabelian groups”, Comm. Pure Appl. Math., 21 (1968), 605–629 | DOI | MR | Zbl

[3] S. Bachmuth, H.Y. Mochizuki, “Automorphisms of a class of metabelian groups II”, Trans. Amer. Math. Soc., 127 (1967), 294–301 | DOI | MR | Zbl

[4] V.A. Roman'kov, “Primitive elements of free groups of rank 3”, Math. USSR Sb., 73:2 (1992), 445–454 | DOI | MR | Zbl

[5] A.N. Kabanov, V.A. Roman’kov, “Strictly nontame primitive elements of the free metabelian Lie algebra of rank 3”, Sib. Mat. Zh., 50:1 (2009), 50–66 | DOI | MR | Zbl

[6] S. Bachmuth, H.Y. Mochizuki, “Aut$(F) \rightarrow$ Aut$(F/F'')$ is surjective for $F$ free of rank $\geq 4$”, Trans. Amer. Math. Soc., 292 (1985), 81–101 | MR | Zbl

[7] V.A. Roman'kov, “The group of matrices of residuals”, Correlation problems of abstract and applied algebra, Collect. sci., Works, Novosibirsk, 1985, 35–52 | Zbl

[8] V.A. Roman'kov, “The automorphism groups of free metabelian groups”, Correlation problems of abstract and applied algebra, Collect. sci., Works, Novosibirsk, 1985, 53–81 | Zbl

[9] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, John Wiley and Sons, New York–London–Sydney, 1966 | MR | Zbl

[10] R.C. Lyndon, P.E. Shupp, Combinatorial group theory, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl

[11] M. Hall, Jr, The Theory of Groups, Macmillan, New York, 1959 | MR | Zbl

[12] A.A. Suslin, “On the structure of the special linear group over polynomial rings”, Math. USSR Izv., 11 (1977), 221–238 | DOI | MR | Zbl

[13] S. Bachmuth, H.Y. Mochizuki, “E$_2 \not=$ SL$_2$ for most Laurent polynomial rings”, Amer. J. Math., 104 (1982), 1181–1189 | DOI | MR | Zbl

[14] S. Bachmuth, H.Y. Mochizuki, “The non-finite generation of Aut$(G), \ G$ free metabelian of rank $3$”, Trans. Amer. Math. Soc., 270 (1982), 693–700 | MR | Zbl

[15] R.H. Fox, “Free differential calculus I – Derivation in the free group ring”, Ann. Math., 57 (1953), 547–560 | DOI | MR | Zbl

[16] R.H. Crowell, R.H. Fox, Introduction to knot theory, Ginn and company, Boston–New York–Chicago–Atlanta–Dallas–Palo Alto–Toronto, 1963 | MR | Zbl

[17] E.I. Timoshenko, Endomorphisms and universal theories of solvable groups, Novosibirsk State Technical University, Novosibirsk, 2011 (in Russian)

[18] V.A. Roman'kov, Essays in algebra and cryptology: Solvable groups, OmSU Publisher, Omsk, 2017 (in Russian)

[19] R.C. Lyndon, “Cohomology theory of groups with a single defining relation”, Ann. Math., 52 (1950), 650–665 | DOI | MR | Zbl

[20] J.S. Birman, “An inverse function theorem for free groups”, Proc. Am. Math. Soc., 41 (1973), 634–638 | DOI | MR | Zbl

[21] M.S. Montgomery, “Left and right inverses in group algebras”, Bull. Am. Math. Soc., 75 (1969), 539–540 | DOI | MR | Zbl

[22] U.U. Umirbaev, “Primitive elements of free groups”, Russ. Math. Surv., 49:2 (1994), 184–185 | DOI | MR | Zbl

[23] E.I. Timoshenko, On the inclusion of given elements into a basis of a free metabelian group, 2699-V, VINITI, Novosibirsk, 1988 (in Russian)

[24] V.A. Roman'kov, “Criteria for the primitivity of a system of elements of a free metabelian group”, Ukr. Mat. Zh., 43:7–8 (1991), 996–1002 | MR | Zbl

[25] W. Magnus, “On a theorem of Marshall Hall”, Ann. Math., 40 (1939), 764–768 | DOI | MR | Zbl

[26] M.J. Evans, “Primitive elements in the free metabelian group of rank $3$”, J. Algebra, 220:2 (1999), 475–491 | DOI | MR | Zbl

[27] C.K. Gupta, N.D. Gupta, V.A. Roman'kov, “Primitivity in free groups and free metabelian groups”, Can. J. Math., 44:3 (1992), 516–523 | DOI | MR | Zbl

[28] M.J. Evans, “Presentations of groups involving more generators than are necessary”, Proc. Lond. Math. Soc., 67 (1993), 106–126 | DOI | MR | Zbl

[29] M.J. Evans, “Presentations of the free metabelian group of rank 2”, Canadian Math. Bull., 37:4 (1994), 468–472 | DOI | MR | Zbl