On hypergraphs of minimal and prime models of theories of abelian groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1137-1154.

Voir la notice de l'article provenant de la source Math-Net.Ru

We systematize known results about minimal and prime models of theories of abelian groups. Based on these results we describe properties and provide structural ones on hypergraphs of models for theories of abelian groups. In particular, we characterize non-emptiness and infiniteness of hypergraphs of minimal and prime models. We give necessary and sufficient conditions for almost disjointness of the respective hypergraphs. We also characterize conditions of preservation for non-emptiness and disjointness of hypergraphs of minimal and prime models at transformations to direct sums of groups.
Keywords: hypergraph of models, minimal model, prime model, abelian group, elementary theory.
@article{SEMR_2020_17_a29,
     author = {S. V. Sudoplatov},
     title = {On hypergraphs of minimal and prime models of theories of abelian groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1137--1154},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a29/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - On hypergraphs of minimal and prime models of theories of abelian groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1137
EP  - 1154
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a29/
LA  - ru
ID  - SEMR_2020_17_a29
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T On hypergraphs of minimal and prime models of theories of abelian groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1137-1154
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a29/
%G ru
%F SEMR_2020_17_a29
S. V. Sudoplatov. On hypergraphs of minimal and prime models of theories of abelian groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1137-1154. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a29/

[1] S.V. Sudoplatov, “On acyclic hypergraphs of minimal prime models”, Sib. Math. J., 42:6 (2001), 1170–1172 | DOI | MR | Zbl

[2] S.V. Sudoplatov, Group polygonometries, NSTU, Novosibirsk, 2013

[3] S.V. Sudoplatov, “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sci., 169:5 (2010), 680–695 | DOI | MR | Zbl

[4] S.V. Sudoplatov, The Lachlan problem, NSTU, Novosibirsk, 2009

[5] K.A. Baikalova, “On some hypergraphs of prime models and their generated limit models”, Collection of papers, Algebra and Model Theory, 7, eds. A.G. Pinus, K.N. Ponomaryov, S. V. Sudoplatov, NSTU, Novosibirsk, 2009, 6–17 | MR

[6] S.V. Sudoplatov, Classification of countable models of complete theories, v. 1, NSTU, Novosibirsk, 2018

[7] S.V. Sudoplatov, “On the separability of elements and sets in hypergraphs of models of a theory”, Bulletin of Karaganda University. Series “Mathematics”, 82:2 (2016), 113–120

[8] B.Sh. Kulpeshov, S.V. Sudoplatov, “On relative separability in hypergraphs of models of theories”, Eurasian Math. J., 9:4 (2018), 68–78 | DOI | MR | Zbl

[9] R. Deissler, “Minimal and prime models of complete theories of torsion free abelian groups”, Algebra Univers., 9 (1979), 250–265 | DOI | MR | Zbl

[10] Yu.L. Ershov, Decidability problems and constructive models, Nauka, M., 1980 | MR | Zbl

[11] A.V. Molokov, “Prime models of theories of Abelian groups”, Some problems and tasks of analysis and algebra, Interuniv. Collect. sci. Works, NSU, Novosibirsk, 1985, 113–119 | MR | Zbl

[12] M.I. Kargapolov, Yu.I. Merzlyakov, Fundamentals of Group Theory, Nauka, M., 1982 | MR | Zbl

[13] L. Fuchs, Infinite abelian groups, v. I, Academic Press, New York–London, 1970 | MR | Zbl

[14] L. Fuchs, Infinite abelian groups, v. II, Academic Press, New York–London, 1973 | MR | Zbl

[15] W. Szmielew, “Elementary properties of abelian groups”, Fundam. Math., 41 (1955), 203–271 | DOI | MR | Zbl

[16] Yu.L. Ershov, E.A. Palyutin, Mathematical logic, FIZMATLIT, M., 2011 | MR | Zbl

[17] P.C. Eklof, E.R. Fischer, “The elementary theory of abelian groups”, Ann. Math. Logic, 4:2 (1972), 115–171 | DOI | MR | Zbl

[18] W. Hodges, Model theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[19] A. Pillay, “Closed sets and chain conditions in stable theories”, J. Symb. Log., 49:4 (1984), 1350–1362 | DOI | MR | Zbl

[20] J.T. Baldwin, A. Blass, A.M.W. Glass, D. W. Kueker, “A ‘natural’ theory without a prime model”, Algebra Univers., 3 (1973), 152–155 | DOI | MR | Zbl

[21] K.A. Baikalova, S.V. Sudoplatov, “On almost disjoint hypergraphs of models of theories of abelian groups”, International conference “Mal'tsev meeting” (November 21–25, 2016), Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, 2016, 173 | MR