On groups with a strongly embedded unitary subgroup
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1128-1136.

Voir la notice de l'article provenant de la source Math-Net.Ru

A proper subgroup $B$ of a group $G$ is called strongly embedded, if $2\in\pi(B)$ and $2\notin\pi(B \cap B^g)$ for every element $g \in G \setminus B $, and therefore $ N_G(X) \leq B$ for every $2$-subgroup $ X \leq B $. An element $a$ of a group $G$ is called finite, if for every $ g\in G $ the subgroup $ \langle a, a^g \rangle $ is finite. In the paper, it is proved that a group with a finite element of order $4$ and a strongly embedded subgroup isomorphic to the Borel subgroup of $U_3(Q)$ over a locally finite field $Q$ of characteristic $2$ is locally finite and isomorphic to the group $U_3(Q)$.
Keywords: A strongly embedded subgroup of a unitary type, Borel subgroup, Cartan subgroup, involution, finite element.
@article{SEMR_2020_17_a28,
     author = {A. I. Sozutov},
     title = {On groups with a strongly embedded unitary subgroup},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1128--1136},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a28/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - On groups with a strongly embedded unitary subgroup
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1128
EP  - 1136
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a28/
LA  - en
ID  - SEMR_2020_17_a28
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T On groups with a strongly embedded unitary subgroup
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1128-1136
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a28/
%G en
%F SEMR_2020_17_a28
A. I. Sozutov. On groups with a strongly embedded unitary subgroup. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1128-1136. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a28/

[1] D. Gorenstein, Finite simple groups, Plenum Press, New York, 1982 | MR | Zbl

[2] M. Suzuki, “On a class of doubly transitive groups. I; II”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl

[3] H. Bender, “Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt”, J. Algebra, 17:4 (1971), 527–554 | DOI | MR | Zbl

[4] A.I. Sozutov, “Some infinite groups with strongly embedded subgroup”, Algebra Logic, 39 (2000), 345–353 | DOI | MR

[5] A.I. Sozutov, N.M. Suchkov, “On infinite groups with a given strongly isolated 2-subgroup”, Math. Notes, 68:2 (2000), 237–247 | DOI | MR | Zbl

[6] A.I. Sozutov, A.K. Shlepkin, “On Some Groups with Finite Involution Saturated with Finite Simple Groups”, Math. Notes, 72:3 (2002), 398–410 | DOI | MR | Zbl

[7] D.V. Lytkina, L.R. Tukhvatullina, K.A. Filippov, “Periodic groups saturated by finite simple groups $U_3(2^m)$”, Algebra Logic, 47:3 (2008), 166–175 | DOI | MR | Zbl

[8] D.V. Lytkina, V.D. Mazurov, “Groups containing a strongly embedded subgroup”, Algebra Logic, 48:2 (2009), 108–114 | DOI | MR | Zbl

[9] D.V. Lytkina, A.A. Shlepkin, “Periodic Groups Saturated with Finite Simple Groups of Types $U_3$ and $L_3$”, Algebra Logic, 55:4 (2016), 289–294 | DOI | MR | Zbl

[10] D.V. Lytkina, A.A. Shlepkin, “Periodic Groups Saturated with the Linear Groups of Degree 2 and the Unitary Groups of Degree 3 over Finite Fields of Odd Characteristic”, Sib. Adv. Math., 28:2 (2018), 175–186 | DOI | MR | Zbl

[11] O.N. Kegel, B.A.F. Wehrfritz, Locally Finite Groups, North-Holland, Amsterdam, 1973 | MR | Zbl

[12] A.M. Popov, A.I. Sozutov, V.P. Sunkov, Gruppi s sistemami frobeniusovih podgrupp, IPTS KGTU, Krasnoyarsk, 2004

[13] A.S. Kondrat'ev, Gruppi i algebri Li, UrO RAN, Yekaterinburg, 2009

[14] M.I. Kargapolov, Yu.I. Merzlyakov, Foundations of group theory, Nauka, M., 1982 | MR | Zbl

[15] A.I. Sozutov, N.M. Suchkov, N.G. Suchkova, Beskonchnie gruppi s involutsiyami, Sibirskii federalnii universitet, Krasnoyarsk, 2011

[16] H.S.M. Coxeter, W.O.J. Moser, Generators and relations for discrete groups, Springer-Verlag, Berlin etc, 1972 | MR | Zbl