On groups with a strongly embedded unitary subgroup
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1128-1136

Voir la notice de l'article provenant de la source Math-Net.Ru

A proper subgroup $B$ of a group $G$ is called strongly embedded, if $2\in\pi(B)$ and $2\notin\pi(B \cap B^g)$ for every element $g \in G \setminus B $, and therefore $ N_G(X) \leq B$ for every $2$-subgroup $ X \leq B $. An element $a$ of a group $G$ is called finite, if for every $ g\in G $ the subgroup $ \langle a, a^g \rangle $ is finite. In the paper, it is proved that a group with a finite element of order $4$ and a strongly embedded subgroup isomorphic to the Borel subgroup of $U_3(Q)$ over a locally finite field $Q$ of characteristic $2$ is locally finite and isomorphic to the group $U_3(Q)$.
Keywords: A strongly embedded subgroup of a unitary type, Borel subgroup, Cartan subgroup, involution, finite element.
@article{SEMR_2020_17_a28,
     author = {A. I. Sozutov},
     title = {On groups with a strongly embedded unitary subgroup},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1128--1136},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a28/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - On groups with a strongly embedded unitary subgroup
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1128
EP  - 1136
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a28/
LA  - en
ID  - SEMR_2020_17_a28
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T On groups with a strongly embedded unitary subgroup
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1128-1136
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a28/
%G en
%F SEMR_2020_17_a28
A. I. Sozutov. On groups with a strongly embedded unitary subgroup. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1128-1136. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a28/