Perceptibility in pre-Heyting logics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1064-1072.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is dedicated to problems of perceptibility and recognizability in pre-Heyting logics, that is, in extensions of the minimal logic J satisfying the axiom $\neg\neg (\bot\rightarrow p)$. These concepts were introduced in [8, 11, 10]. The logic Od and its extensions were studied in [5, 14] and other papers. The semantic characterization of the logic Od and its completeness were obtained in [5]. The formula F and the logic JF were studied in [12]. It was proved that the logic JF has disjunctive and finite-model properties. The logic JF has Craig's interpolation property (established in [17]). The perceptibility of the formula F in well-composed logics is proved in [14]. It is unknown whether the formula F is perceptible over J [8]. We will prove that the formula F is perceptible over the minimal pre-Heyting logic Od and the logic OdF is recognizable over Od.
Keywords: Recognizability, perceptibility, minimal logic, pre-Heyting logic, superintuitionistic logic
Mots-clés : Johansson algebra, Heyting algebra, calculus.
@article{SEMR_2020_17_a26,
     author = {L. L. Maksimova and V. F. Yun},
     title = {Perceptibility in {pre-Heyting} logics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1064--1072},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a26/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - Perceptibility in pre-Heyting logics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1064
EP  - 1072
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a26/
LA  - en
ID  - SEMR_2020_17_a26
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T Perceptibility in pre-Heyting logics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1064-1072
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a26/
%G en
%F SEMR_2020_17_a26
L. L. Maksimova; V. F. Yun. Perceptibility in pre-Heyting logics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1064-1072. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a26/

[1] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer F3ormalismus”, Compos. Math., 4 (1936), 119–136 | MR | Zbl

[2] W. Craig, “Three uses of Herbrand-Gentzen theorem in relating model theory”, J. Symb. Log., 22 (1957), 269–285 | DOI | MR | Zbl

[3] L.L. Maksimova, “Implicit Definability and Positive Logics”, Algebra Logic, 42:1 (2003), 37–53 | DOI | MR | Zbl

[4] S. Odintsov, “Logic of classic refutability and class of extensions of minimal logic”, Log. Log. Philos., 9 (2001), 91–107 | DOI | MR | Zbl

[5] L.L. Maksimova, “Negative equivalence over the minimal logic and interpolation”, Sib. Elektron. Mat. Izv., 11 (2014), 1–17 | MR | Zbl

[6] L.L. Maksimova, V.F. Yun, “Calculi over minimal logic and nonembeddability of algebras”, Sib. Elektron. Mat. Izv., 13 (2016), 704–715 | MR | Zbl

[7] D.M. Gabbay, L. Maksimova, Interpolation and Definability: Modal and Intuitionistic Logics, Clarendon Press, Oxford, 2005 | MR | Zbl

[8] L.L. Maksimova, V.F. Yun, “Recognizable Logics”, Algebra Logic, 54:2 (2015), 167–182 | DOI | MR | Zbl

[9] L.L. Maksimova, V.F. Yun, “WIP-minimal logics and interpolation”, Sib. Elektron. Mat. Izv., 12 (2015), 7–20 (in Russian) | MR | Zbl

[10] L.L. Maksimova, V.F. Yun, “Strong Decidability and Strong Recognizability”, Algebra Logic, 56:5 (2017), 370–385 | DOI | MR | Zbl

[11] L.L. Maksimova, “Recognizable and Perceptible Logics and Varieties”, Algebra Logic, 56:3 (2017), 245–250 | DOI | MR | Zbl

[12] M.V. Stukachyova, “The Disjunction Property in the Class of Paraconsistent Extensions of Minimal Logic”, Algebra Logic, 43:2 (2004), 132–141 | DOI | MR | Zbl

[13] L.L. Maksimova, V.F. Yun, “Extensions of the minimal logic and the Interpolation problem”, Sib. Math. J., 59:4 (2019), 681–693 | DOI | MR | Zbl

[14] L.L. Maksimova, V.F. Yun, “Recognizability in pre-Heyting and well-composed logics”, Sib. Elektron. Mat. Izv., 16 (2019), 427–434 | DOI | MR | Zbl

[15] V. Glivenko, “Sur quelques points de la Logique de M. Brouwer”, Bulletin Acad. Bruxelles, 15:5 (1929), 183–188 | Zbl

[16] S.P. Odintsov, “Negative equivalence of extensions of minimal logic”, Stud. Log., 78 (2004), 417–442 | DOI | MR | Zbl

[17] L.L. Maksimova, “A method of proving interpolation in paraconsistent extensions of the minimal logic”, Algebra Logic, 46:5 (2007), 627–648 | DOI | MR | Zbl

[18] S. Odintsov, “Constructive negations and paraconsistency”, Trends in Logic-Studia Logica Library, 26, Springer, Dordrecht, 2008 | MR | Zbl

[19] L.L. Maksimova, “Decidability of the weak interpolation property over the minimal logic”, Algebra and Logic, 50:2 (2011), 106–132 | DOI | MR | Zbl