Monomial Rota---Baxter operators on free commutative non-unital algebra
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1052-1063.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Rota—Baxter operator defined on the polynomial algebra is called monomial if it maps each monomial to a monomial with some coefficient. We classify monomial Rota—Baxter operators defined on the algebra of polynomials in one variable with no constant term. We also describe injective monomial Rota—Baxter operators of nonzero weight on the algebra of polynomials in several variables with no constant term.
Keywords: Rota—Baxter operator
Mots-clés : polynomial algebra.
@article{SEMR_2020_17_a25,
     author = {V. Gubarev},
     title = {Monomial {Rota---Baxter} operators on free commutative non-unital algebra},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1052--1063},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a25/}
}
TY  - JOUR
AU  - V. Gubarev
TI  - Monomial Rota---Baxter operators on free commutative non-unital algebra
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1052
EP  - 1063
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a25/
LA  - en
ID  - SEMR_2020_17_a25
ER  - 
%0 Journal Article
%A V. Gubarev
%T Monomial Rota---Baxter operators on free commutative non-unital algebra
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1052-1063
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a25/
%G en
%F SEMR_2020_17_a25
V. Gubarev. Monomial Rota---Baxter operators on free commutative non-unital algebra. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1052-1063. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a25/

[1] G. Baxter, “An analytic problem whose solution follows from a simple algebraic identity”, Pac. J. Math., 10 (1960), 731–742 | DOI | MR | Zbl

[2] L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4, International Press, Somerville; Higher education press, 2012 | MR | Zbl

[3] V. Gubarev, “Rota-Baxter operators on unital algebras”, Mosc. Math. J., 43 pp., arXiv: 1805.00723v3 | MR

[4] Yu H., “Classification of monomial Rota-Baxter operators on $k[x]$”, J. Algebra Appl., 15:5 (2016) | MR | Zbl

[5] S.H. Zheng, L. Guo, M. Rosenkranz, “Rota-Baxter operators on the polynomial algebras, integration and averaging operators”, Pac. J. Math., 275:2 (2015), 481–507 | DOI | MR | Zbl

[6] L. Guo, Z. Liu, “Rota-Baxter operators on generalized power series rings”, J. Algebra Appl., 8:4 (2009), 557–564 | DOI | MR | Zbl

[7] R. Mazurek, “Rota-Baxter operators on skew generalized power series rings”, J. Algebra Appl., 13:7 (2014), 1450048 | DOI | MR | Zbl

[8] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Appl. Math., 10, Interscience Publishers, N.Y., 1962 | MR | Zbl

[9] P. Benito, V. Gubarev, A. Pozhidaev, “Rota-Baxter operators on quadratic algebras”, Mediterr. J. Math., 15:5 (2018), 189 | DOI | MR | Zbl

[10] K. Ebrahimi-Fard, Rota-Baxter Algebras and the Hopf Algebra of Renormalization, Ph.D. Thesis, University of Bonn, 2006

[11] V.N. Zhelyabin, “Jordan bialgebras of symmetric elements and Lie bialgebras”, Sib. Math. J., 39:2 (1998), 261–276 | DOI | MR | Zbl

[12] M. Aguiar, “Pre-Poisson algebras”, Lett. Math. Phys., 54:4 (2000), 263–277 | DOI | MR | Zbl

[13] V. Gubarev, A. Perepechko, Proof of Zheng–Guo–Rosenkranz Conjecture, arXiv: 2005.14030

[14] V. Gubarev, Spectrum of Rota-Baxter operators, arXiv: 2006.02654

[15] V. Gubarev, “Embedding of post-Lie algebras into postassociative algebras”, New Trends in Algebra and Combinatorics, Proc. of the 3rd Intern. Congress in Algebra and Combinatorics, eds. K.P. Shum et al., World Scientific, 2020, 57–67 | DOI | Zbl