Mots-clés : polynomial algebra.
@article{SEMR_2020_17_a25,
author = {V. Gubarev},
title = {Monomial {Rota{\textemdash}Baxter} operators on free commutative non-unital algebra},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1052--1063},
year = {2020},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a25/}
}
V. Gubarev. Monomial Rota—Baxter operators on free commutative non-unital algebra. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1052-1063. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a25/
[1] G. Baxter, “An analytic problem whose solution follows from a simple algebraic identity”, Pac. J. Math., 10 (1960), 731–742 | DOI | MR | Zbl
[2] L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4, International Press, Somerville; Higher education press, 2012 | MR | Zbl
[3] V. Gubarev, “Rota-Baxter operators on unital algebras”, Mosc. Math. J., 43 pp., arXiv: 1805.00723v3 | MR
[4] Yu H., “Classification of monomial Rota-Baxter operators on $k[x]$”, J. Algebra Appl., 15:5 (2016) | MR | Zbl
[5] S.H. Zheng, L. Guo, M. Rosenkranz, “Rota-Baxter operators on the polynomial algebras, integration and averaging operators”, Pac. J. Math., 275:2 (2015), 481–507 | DOI | MR | Zbl
[6] L. Guo, Z. Liu, “Rota-Baxter operators on generalized power series rings”, J. Algebra Appl., 8:4 (2009), 557–564 | DOI | MR | Zbl
[7] R. Mazurek, “Rota-Baxter operators on skew generalized power series rings”, J. Algebra Appl., 13:7 (2014), 1450048 | DOI | MR | Zbl
[8] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Appl. Math., 10, Interscience Publishers, N.Y., 1962 | MR | Zbl
[9] P. Benito, V. Gubarev, A. Pozhidaev, “Rota-Baxter operators on quadratic algebras”, Mediterr. J. Math., 15:5 (2018), 189 | DOI | MR | Zbl
[10] K. Ebrahimi-Fard, Rota-Baxter Algebras and the Hopf Algebra of Renormalization, Ph.D. Thesis, University of Bonn, 2006
[11] V.N. Zhelyabin, “Jordan bialgebras of symmetric elements and Lie bialgebras”, Sib. Math. J., 39:2 (1998), 261–276 | DOI | MR | Zbl
[12] M. Aguiar, “Pre-Poisson algebras”, Lett. Math. Phys., 54:4 (2000), 263–277 | DOI | MR | Zbl
[13] V. Gubarev, A. Perepechko, Proof of Zheng–Guo–Rosenkranz Conjecture, arXiv: 2005.14030
[14] V. Gubarev, Spectrum of Rota-Baxter operators, arXiv: 2006.02654
[15] V. Gubarev, “Embedding of post-Lie algebras into postassociative algebras”, New Trends in Algebra and Combinatorics, Proc. of the 3rd Intern. Congress in Algebra and Combinatorics, eds. K.P. Shum et al., World Scientific, 2020, 57–67 | DOI | Zbl