Monomial Rota---Baxter operators on free commutative non-unital algebra
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1052-1063

Voir la notice de l'article provenant de la source Math-Net.Ru

A Rota—Baxter operator defined on the polynomial algebra is called monomial if it maps each monomial to a monomial with some coefficient. We classify monomial Rota—Baxter operators defined on the algebra of polynomials in one variable with no constant term. We also describe injective monomial Rota—Baxter operators of nonzero weight on the algebra of polynomials in several variables with no constant term.
Keywords: Rota—Baxter operator
Mots-clés : polynomial algebra.
@article{SEMR_2020_17_a25,
     author = {V. Gubarev},
     title = {Monomial {Rota---Baxter} operators on free commutative non-unital algebra},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1052--1063},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a25/}
}
TY  - JOUR
AU  - V. Gubarev
TI  - Monomial Rota---Baxter operators on free commutative non-unital algebra
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1052
EP  - 1063
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a25/
LA  - en
ID  - SEMR_2020_17_a25
ER  - 
%0 Journal Article
%A V. Gubarev
%T Monomial Rota---Baxter operators on free commutative non-unital algebra
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1052-1063
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a25/
%G en
%F SEMR_2020_17_a25
V. Gubarev. Monomial Rota---Baxter operators on free commutative non-unital algebra. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1052-1063. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a25/