Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a22, author = {N. Bazhenov and M. Marchuk}, title = {A note on decidable categoricity and index sets}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1013--1026}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a22/} }
N. Bazhenov; M. Marchuk. A note on decidable categoricity and index sets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1013-1026. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a22/
[1] Yu. L. Ershov, “Constructive models”, Selected Questions of Algebra and Logic, eds. Yu. L. Ershov, M. I. Kargapolov, Yu. I. Merzlyakov, D. M. Smirnov, A. I. Shirshov, Nauka, Novosibirsk, 1973, 111–130 (In Russian) | MR
[2] M. Morley, “Decidable models”, Isr. J. Math., 25:3–4 (1976), 233–240 | DOI | MR | Zbl
[3] S. S. Goncharo, A. T. Nurtazin, “Constructive models of complete solvable theories”, Algebra Logic, 12:2 (1973), 67–77 | DOI | MR
[4] L. Harrington, “Recursively presentable prime models”, J. Symb. Log., 39:2 (1974), 305–309 | DOI | MR | Zbl
[5] S. S. Goncharov, “Strong constructivizability of homogeneous models”, Algebra Logic, 17:4 (1978), 247–263 | DOI | MR
[6] M. G. Peretyat'kin, “Criterion for strong constructivizability of a homogeneous model”, Algebra Logic, 17:4 (1978), 290–301 | DOI | MR
[7] V. S. Harizanov, “Pure computable model theory”, Handbook of Recursive Mathematics, v. 1, Stud. Logic Found. Math., 138, eds. Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, Elsevier Science B. V., Amsterdam, 1998, 3–114 | DOI | MR | Zbl
[8] P. Cholak, C. McCoy, “Effective prime uniqueness”, Proc. Am. Math. Soc., 145:12 (2017), 5363–5379 | DOI | MR | Zbl
[9] S. S. Goncharov, “On autostability of almost prime models relative to strong constructivizations”, Russ. Math. Surv., 65:5 (2010), 901–935 | DOI | MR | Zbl
[10] D. R. Hirschfeldt, K. Lange, R. A. Shore, Induction, bounding, weak combinatorial principles, and the homogeneous model theorem, Mem. Am. Math. Soc., 249, 2017, iii+101 pp. | MR
[11] A. T. Nurtazin, “Strong and weak constructivization and computable families”, Algebra Logic, 13:3 (1974), 177–184 | DOI | MR
[12] S. S. Goncharov, M. I. Marchuk, “Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations”, Algebra Logic, 54:2 (2015), 108–126 | DOI | MR | Zbl
[13] R. G. Downey, A. M. Kach, S. Lempp, A. Lewis-Pye, A. Montalbán, D. Turetsky, “The complexity of computable categoricity”, Adv. Math., 268 (2015), 423–466 | DOI | MR | Zbl
[14] S. S. Goncharov, V. D. Dzgoev, “Autostability of models”, Algebra Logic, 19:1 (1980), 28–37 | DOI | MR | Zbl
[15] S. S. Goncharov, N. A. Bazhenov, M.I. Marchuk, “Index set of linear orderings that are autostable relative to strong constructivizations”, J. Math. Sci., New York, 221:6 (2017), 840–848 | DOI | MR
[16] D. Cenzer, V. Harizanov, J. B. Remmel, “$\Sigma^0_1$ and $\Pi^0_1$ equivalence structures”, Ann. Pure Appl. Logic, 162:7 (2011), 490–503 | DOI | MR | Zbl
[17] C. J. Ash, J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Logic Found. Math., 144, Elsevier Science B. V., Amsterdam, 2000 | MR | Zbl
[18] Yu. L. Ershov, S. S. Goncharov, Constructive models, Consultants Bureau, New York, 2000 | MR | Zbl
[19] C. C. Chang, H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973 | MR | Zbl
[20] S. S. Goncharov, M. I. Marchuk, “Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations”, Algebra Logic, 54:6 (2016), 428–439 | DOI | MR | Zbl
[21] S. S. Goncharov, N. A. Bazhenov, M. I. Marchuk, “The index set of Boolean algebras autostable relative to strong constructivizations”, Siberian Math. J., 56:3 (2015), 393–404 | DOI | MR | Zbl
[22] S. S. Goncharov, N. A. Bazhenov, M. I. Marchuk, “The index set of the groups autostable relative to strong constructivizations”, Siberian Math. J., 58:1 (2017), 72–77 | DOI | MR | Zbl
[23] M. I. Marchuk, “Index set of structures with two equivalence relations that are autostable relative to strong constructivizations”, Algebra Logic, 55:4 (2016), 306–314 | DOI | MR | Zbl
[24] S. Lang, Algebra, Graduate Texts in Mathematics, 211, Revised third edition, Springer-Verlag, New York, 2002 | MR | Zbl
[25] N. Jacobson, Lectures in abstract algebra, v. III, Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.–Toronto, Ont.–London–New York, 1964 | MR | Zbl
[26] R. Miller, V. Ocasio González, “Degree spectra of real closed fields”, Arch. Math. Logic, 58:3–4 (2019), 387–411 | DOI | MR | Zbl
[27] W. Calvert, V. S. Harizanov, J. F. Knight, S. Miller, “Index sets of computable structures”, Algebra Logic, 45:5 (2006), 306–325 | DOI | MR | Zbl
[28] V. A. Ocasio, Computability in the class of real closed fields, Ph.D. Thesis, University of Notre Dame, 2014 | MR
[29] W. Calvert, “The isomorphism problem for classes of computable fields”, Arch. Math. Logic, 43:3 (2004), 327–336 | DOI | MR | Zbl
[30] W. Calvert, D. Cenzer, V. Harizanov, A. Morozov, “Effective categoricity of equivalence structures”, Ann. Pure Appl. Logic, 141:1–2 (2006), 61–78 | DOI | MR | Zbl
[31] S. S. Goncharov, “Degrees of autostability relative to strong constructivizations”, Proc. Steklov Inst. Math., 274:1 (2011), 105–115 | DOI | MR | Zbl
[32] N. Bazhenov, “Autostability spectra for decidable structures”, Math. Struct. Comput. Sci., 28:3 (2018), 392–411 | DOI | MR
[33] N. Bazhenov, M. Harrison-Trainor, I. Kalimullin, A. Melnikov, K. M. Ng, “Automatic and polynomial-time algebraic structures”, J. Symb. Log., 84:4 (2019), 1630–1669 | DOI | MR | Zbl
[34] S. S. Goncharov, R. Miller, V. Harizanov, “Turing degrees of complete formulas of almost prime models”, Algebra Logic, 58:3 (2019), 282–287 | DOI | Zbl
[35] N. A. Bazhenov, M. Harrison-Trainor, “Constructing decidable graphs from decidable structures”, Algebra Logic, 58:5 (2019), 369–382 | DOI | MR | Zbl
[36] N. Bazhenov, S. Goncharov, A. Melnikov, “Decompositions of decidable abelian groups”, Int. J. Algebra Comput., 30:1 (2020), 49–90 | DOI | MR | Zbl
[37] S. S. Goncharov, J. F. Knight, “Computable structure and non-structure theorems”, Algebra Logic, 41:6 (2002), 351–373 | DOI | MR | Zbl
[38] E. B. Fokina, “Index sets of decidable models”, Siberian Math. J., 48:5 (2007), 939–948 | DOI | MR | Zbl
[39] Yu. L. Ershov, Decidability problems and constructive models, Nauka, M., 1980 (In Russian) | MR
[40] A. G. Melnikov, “Computable abelian groups”, Bull. Symb. Log., 20:3 (2014), 315–356 | DOI | MR | Zbl
[41] W. Szmielew, “Elementary properties of Abelian groups”, Fund. Math., 41 (1955), 203–271 | DOI | MR | Zbl