On function spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 999-1008.

Voir la notice de l'article provenant de la source Math-Net.Ru

For certain properties $\mathfrak{P}$ of topological $T_0$-spaces, we prove that an arbitrary $T_0$-space $\mathbb{Y}$ has property $\mathfrak{P}$ if and only if the function space $\mathbb{C}(\mathbb{X},\mathbb{Y})$ endowed with the pointwise convergence topology possesses $\mathfrak{P}$ for some (and therefore, for each) $[\alpha^\ast-]$space $\mathbb{X}$.
Keywords: $d$-space, essentially complete space, function space, injective space, sober space, $T_0$-space.
@article{SEMR_2020_17_a21,
     author = {Yu. L. Ershov and M. V. Schwidefsky},
     title = {On function spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {999--1008},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a21/}
}
TY  - JOUR
AU  - Yu. L. Ershov
AU  - M. V. Schwidefsky
TI  - On function spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 999
EP  - 1008
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a21/
LA  - en
ID  - SEMR_2020_17_a21
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%A M. V. Schwidefsky
%T On function spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 999-1008
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a21/
%G en
%F SEMR_2020_17_a21
Yu. L. Ershov; M. V. Schwidefsky. On function spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 999-1008. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a21/

[1] R. Arens, J. Dugundji, “Topologies for function spaces”, Pac. J. Math., 1 (1951), 5–31 | DOI | MR | Zbl

[2] B. Banaschewski, “Essential extensions of $T_0$-spaces”, General Topology Appl., 7 (1977), 233–246 | MR | Zbl

[3] Yu.L. Ershov, “Computable functionals of finite types”, Algebra Logic, 11:4 (1973), 203–242 | DOI | MR | Zbl

[4] Yu.L. Ershov, “Continuous lattices and $A$-spaces”, Sov. Math., Dokl., 13 (1972), 1551–1555 | MR | Zbl

[5] Yu.L. Ershov, “The theory of $A$-spaces”, Algebra Logic, 12:4 (1975), 209–232 | DOI | MR | Zbl

[6] Yu.L. Ershov, “On $d$-spaces”, Theor. Comput. Sci., 224:1–2 (1999), 59–72 | DOI | MR | Zbl

[7] Yu.L. Ershov, “On essential extensions of $T_0$-spaces”, Dokl. Math., 60:3 (1999), 188–191 | MR | Zbl

[8] Yu.L. Ershov, “$\Delta$-spaces”, Algebra Logic, 38:6 (1999), 667–679 | DOI | MR | Zbl

[9] Yu.L. Ershov, “On the classification of (effective) $\varphi$-spaces”, Ann. Pure Appl. Logic, 159:3 (2009), 285–291 | DOI | MR | Zbl

[10] Yu.L. Ershov, “On essential extensions of $T_0$-spaces. II”, Algebra Logic, 55:1 (2016), 1–8 | DOI | MR | Zbl

[11] Yu.L. Ershov, “Solimit points and $u$-extensions”, Algebra Logic, 56:4 (2017), 295–301 | DOI | MR | Zbl

[12] Yu.L. Ershov, Topology for Discrete Mathematics, Siberian Branch of RAS, Novosibirsk, 2020

[13] P.T. Johnstone, A. Joyal, “Continuous categories and exponential toposes”, J. Pure Appl. Algebra, 25 (1982), 255–296 | DOI | MR | Zbl

[14] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott, Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications, 93, Cambridge University Press, Cambridge, 2003 | MR | Zbl