On function spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 999-1008

Voir la notice de l'article provenant de la source Math-Net.Ru

For certain properties $\mathfrak{P}$ of topological $T_0$-spaces, we prove that an arbitrary $T_0$-space $\mathbb{Y}$ has property $\mathfrak{P}$ if and only if the function space $\mathbb{C}(\mathbb{X},\mathbb{Y})$ endowed with the pointwise convergence topology possesses $\mathfrak{P}$ for some (and therefore, for each) $[\alpha^\ast-]$space $\mathbb{X}$.
Keywords: $d$-space, essentially complete space, function space, injective space, sober space, $T_0$-space.
@article{SEMR_2020_17_a21,
     author = {Yu. L. Ershov and M. V. Schwidefsky},
     title = {On function spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {999--1008},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a21/}
}
TY  - JOUR
AU  - Yu. L. Ershov
AU  - M. V. Schwidefsky
TI  - On function spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 999
EP  - 1008
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a21/
LA  - en
ID  - SEMR_2020_17_a21
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%A M. V. Schwidefsky
%T On function spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 999-1008
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a21/
%G en
%F SEMR_2020_17_a21
Yu. L. Ershov; M. V. Schwidefsky. On function spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 999-1008. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a21/