Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a18, author = {V. V. Rybakov}, title = {Temporal logic with overlap temporal relations generated by time states themselves}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {923--932}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a18/} }
TY - JOUR AU - V. V. Rybakov TI - Temporal logic with overlap temporal relations generated by time states themselves JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 923 EP - 932 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a18/ LA - en ID - SEMR_2020_17_a18 ER -
V. V. Rybakov. Temporal logic with overlap temporal relations generated by time states themselves. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 923-932. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a18/
[1] F. Baader, P. Marantidis, A. Mottet, A. Okhotin, “Extensions of unificationmodulo ACUI”, Mathematical Structures in Computer Science, 2019, 1–30 | MR
[2] F. Baader, P. Narendran, UNIF-97, Proceedings of the 11th International Workshop on Unification, LIFO Technical Report 97-8, 1997 | MR | Zbl
[3] S.Babenyshev, V. Rybakov, “Linear Temporal Logic LTL: Basis for Admissible Rules”, J. Log. Comput., 21:2 (2011), 157–177 | DOI | MR | Zbl
[4] H. Friedman, “One Hundred and Two Problems in Mathematical Logic”, J. Symb. Log., 40 (1975), 113–129 | DOI | MR | Zbl
[5] D.M. Gabbay, I.M. Hodkinson, “An axiomatization of the temporal logic with until and since over the real numbers”, J. Log. Comput., 1:2 (1990), 229–259 | DOI | MR | Zbl
[6] D.M. Gabbay, I.M. Hodkinson, M.A. Reynolds, Temporal Logic, v. 1, Mathematical foundations and computational aspects, Clarendon Press, Oxford, 1994 | MR | Zbl
[7] R. Goldblatt, “Logics of Time and Computations”, Chapter 6, CSLI Lecture Notes, 7, 1992 | MR
[8] V. Goranko, “Hierarchies of Modal and Temporal Logics with Reference Pointers”, J. Log. Lang. Inf., 5:1 (1996), 1–24 | DOI | MR | Zbl
[9] S. Ghilardi, “Unification in Intuitionistic Logic”, J. Symb. Log., 64:2 (1999), 859–880 | DOI | MR | Zbl
[10] S. Ghilardi, “Unification Through Projectivity”, J. Log. Comput., 7:6 (1997), 733–752 | DOI | MR | Zbl
[11] S. Odintsov, V. Rybakov, “Inference Rules in Nelson's Logics, Admissibility and Weak Admissibility”, Log. Univers., 9:1 (2015), 93–120 | DOI | MR | Zbl
[12] S. Odintsov, V. Rybakov, “Unification and admissible rules for paraconsistent minimal Johanssons' logic J and positive intuitionistic logic $IPC^+$”, Ann. Pure Appl. Logic, 164:7–8 (2013), 771–784 | DOI | MR | Zbl
[13] V.Rybakov, “Refined common knowledge logics or logics of common information”, Arch. Math. Log., 42:2 (2003), 179–200 | DOI | MR | Zbl
[14] V. Rybakov, “Logical Consecutions in Discrete Linear Temporal Logic”, J. Symb. Log., 70:4 (2005), 1137–1149 | DOI | MR | Zbl
[15] V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Ann. Pure Appl. Logic, 155:1 (2008), 32–45 | DOI | MR | Zbl
[16] V. Rybakov, “Logic of knowledge and discovery via interacting agents-Decision algorithm for true and satisfiable statements”, Inf. Sci., 179:11 (2009), 1608–1614 | DOI | MR | Zbl
[17] V. Rybakov, “Linear Temporal Logic $LTL_{K}$ extended by Multi-Agent Logic $K_n$ with Interacting Agents”, J. Log. Comput., 19:6 (2009), 989–1017 | DOI | MR | Zbl
[18] V. Rybakov, “Logical Analysis for Chance Discovery in Multi-Agents' Environment”, Conference Proceedings, KES 2012, Springer, 2012, 1593–1601
[19] V. Rybakov, “Writing out unifiers in linear temporal logic”, J. Log. Comput., 22:5 (2012), 1199–1206 | DOI | MR | Zbl
[20] V.Rybakov, “Non-transitive linear temporal logic and logical knowledge operations”, J. Log. Comput., 26:3 (2016), 945–958 | DOI | MR | Zbl
[21] V.V. Rybakov, “Nontransitive temporal multiagent logic, information and knowledge, deciding algorithms”, Sib. Math. J., 58:5 (2017), 875–886 | DOI | MR | Zbl
[22] V. Rybakov, “Multiagent temporal logics with multivaluations”, Sib. Math. J., 59:4 (2018), 710–720 | DOI | MR | Zbl
[23] V. Rybakov, “Linear Temporal Logic with Non-transitive Time, Algorithms for Decidability and Verification of Admissibility”, Outstanding Contributions to Logic, Springer, 2018, 219–243 | DOI | MR | Zbl
[24] V. Rybakov, “Temporal multi-valued logic with lost worlds in the past”, Sib. Electron. Math. Izv., 15 (2018), 436–449 | MR | Zbl
[25] V. Rybakov, “Branching time agents' logic, satisfiability problem by rules in reduced form”, Sib. Electron. Math. Izv., 16 (2019), 1158–1170 | DOI | MR | Zbl
[26] R. Schmidt, D. Tishkovsky, “Solving rule admissibility problem for S4 by a tableau method”, Automated Reasoning Workshop, 2011, 30
[27] S. Babenyshev, V. Rybakov, R. Schmidt, D. Tishkovsky, “A tableau method for checking rule admissibility in S4”, Electronic Notes in Theoretical Computer Science, 262 (2010), 17–32 | DOI | MR | Zbl
[28] J. van Benthem, “Tense logic and time”, Notre Dame J. Formal Logic, 25:1 (1984), 1–16 | DOI | MR | Zbl
[29] M. Vardi, “An automata-theoretic approach to linear temporal logic”, Y. Banff Higher Order Workshop, 1995, 238–266 http://citeseer.ist.psu.edu/vardi96automatatheoretic.html
[30] M. Vardi, “Reasoning about the past with two-way automata”, ICALP, LNCS, 1443, eds. Larsen K. G. et al., 1998, 628–641 | MR | Zbl
[31] Yde Venema, “Temporal Logic”, The Blackwell Guide on Philosophical Logic, ed. Lou Goble, Blackwell Publishers, Oxford, 2001, 203–223 | MR | Zbl