Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a17, author = {M. G. Peretyat'kin}, title = {The {Tarski-Lindenbaum} algebra of the class of all prime strongly constructivizable models of algorithmic dimension one}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {913--922}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a17/} }
TY - JOUR AU - M. G. Peretyat'kin TI - The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 913 EP - 922 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a17/ LA - en ID - SEMR_2020_17_a17 ER -
%0 Journal Article %A M. G. Peretyat'kin %T The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 913-922 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a17/ %G en %F SEMR_2020_17_a17
M. G. Peretyat'kin. The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 913-922. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a17/
[1] M.G. Peretyat'kin, Finitely axiomatizable theories, Plenum, New York, 1997 | MR | Zbl
[2] M.G. Peretyat'kin, “Finitely axiomatizable theories and Lindenbaum algebras of semantic classes”, Contemp. math., 257, 2000, 221–239 | DOI | MR | Zbl
[3] M.G. Peretyat'kin, “On the Tarski-Lindenbaum algebra of the class of all strongly constructivizable prime models”, Proceedings of the Turing Centenary Conference CiE2012, Lecture notes in Computer Science, 7318, Springer, Berlin, 2012, 589–598 | DOI | MR | Zbl
[4] M.G. Peretyat'kin, “The Tarski-Lindenbaum algebra of the class of all strongly constructivizable countable saturated models”, CiE 2013, Lecture notes in Computer Science, 7921, eds. P. Bonizzoni at al., Springer, Berlin, 2013, 342–352 | DOI | MR | Zbl
[5] W. Hodges, A shorter model theory, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[6] H.J. Rogers, Theory of recursive functions and effective computability, Mc. Graw-Hill Book Co., New York, 1967 | MR | Zbl
[7] Yu.L. Ershov, S.S. Goncharov, Constructive models, Siberian School of Algebra and Logic, XII, Consultants Bureau, New York, 2000 | MR | Zbl
[8] A.T. Nurtazin, “Strong and weak constructivizations and computable families”, Algebra Logic, 13 (1974), 177–184 | DOI | MR | Zbl
[9] S.S. Goncharov, A.T. Nurtazin, “Constructive models of complete decidable theories”, Algebra Logic, 12:2 (1974), 67–77 | DOI | MR | Zbl
[10] L. Harrington, “Recursively presented prime models”, J. Symb. Log., 39:2 (1974), 305–309 | DOI | MR | Zbl
[11] S.P. Odintsov, V.L. Selivanov, “Arithmetical hierarchy and ideals of numerated Boolean algebras”, Sib. Math. J., 30:6 (1989), 952–960 | DOI | MR | Zbl