The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 913-922.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the class of all prime strongly constructivizable models of algorithmic dimension $1$ in a fixed finite rich signature. It is proved that the Tarski-Lindenbaum algebra of this class considered together with a Gödel numbering of the sentences is a Boolean $\Pi^0_3$-algebra whose computable ultrafilters form a dense subset in the set of all ultrafilters; moreover, this algebra is universal with respect to the class of Boolean $\Sigma^0_2$-algebras whose computable ultrafilters represent a dense subset in the set of arbitrary ultrafilters in the algebra. This gives a characterization to the Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension $1$ in a fixed finite rich signature.
Keywords: first-order logic, Tarski-Lindenbaum algebra, computable isomorphism, semantic class of models, algorithmic complexity estimate.
@article{SEMR_2020_17_a17,
     author = {M. G. Peretyat'kin},
     title = {The {Tarski-Lindenbaum} algebra of the class of all prime strongly constructivizable models of algorithmic dimension one},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {913--922},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a17/}
}
TY  - JOUR
AU  - M. G. Peretyat'kin
TI  - The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 913
EP  - 922
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a17/
LA  - en
ID  - SEMR_2020_17_a17
ER  - 
%0 Journal Article
%A M. G. Peretyat'kin
%T The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 913-922
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a17/
%G en
%F SEMR_2020_17_a17
M. G. Peretyat'kin. The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 913-922. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a17/

[1] M.G. Peretyat'kin, Finitely axiomatizable theories, Plenum, New York, 1997 | MR | Zbl

[2] M.G. Peretyat'kin, “Finitely axiomatizable theories and Lindenbaum algebras of semantic classes”, Contemp. math., 257, 2000, 221–239 | DOI | MR | Zbl

[3] M.G. Peretyat'kin, “On the Tarski-Lindenbaum algebra of the class of all strongly constructivizable prime models”, Proceedings of the Turing Centenary Conference CiE2012, Lecture notes in Computer Science, 7318, Springer, Berlin, 2012, 589–598 | DOI | MR | Zbl

[4] M.G. Peretyat'kin, “The Tarski-Lindenbaum algebra of the class of all strongly constructivizable countable saturated models”, CiE 2013, Lecture notes in Computer Science, 7921, eds. P. Bonizzoni at al., Springer, Berlin, 2013, 342–352 | DOI | MR | Zbl

[5] W. Hodges, A shorter model theory, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[6] H.J. Rogers, Theory of recursive functions and effective computability, Mc. Graw-Hill Book Co., New York, 1967 | MR | Zbl

[7] Yu.L. Ershov, S.S. Goncharov, Constructive models, Siberian School of Algebra and Logic, XII, Consultants Bureau, New York, 2000 | MR | Zbl

[8] A.T. Nurtazin, “Strong and weak constructivizations and computable families”, Algebra Logic, 13 (1974), 177–184 | DOI | MR | Zbl

[9] S.S. Goncharov, A.T. Nurtazin, “Constructive models of complete decidable theories”, Algebra Logic, 12:2 (1974), 67–77 | DOI | MR | Zbl

[10] L. Harrington, “Recursively presented prime models”, J. Symb. Log., 39:2 (1974), 305–309 | DOI | MR | Zbl

[11] S.P. Odintsov, V.L. Selivanov, “Arithmetical hierarchy and ideals of numerated Boolean algebras”, Sib. Math. J., 30:6 (1989), 952–960 | DOI | MR | Zbl