Twisted Burnside--Frobenius theorem and $R_\infty$-property for lamplighter-type groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 890-898.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the restricted wreath product ${\mathbb{Z}_n \mathrm{wr} \mathbb{Z}^k}$ has the $R_\infty$-property, i. e. every its automorphism $\varphi$ has infinite Reidemeister number $R(\varphi)$, in exactly two cases: (1) for any $k$ and even $n$; (2) for odd $k$ and $n$ divisible by $3$. In the remaining cases there are automorphisms with finite Reidemeister number, for which we prove the finite-dimensional twisted Burnside–Frobenius theorem ($\text{TBFT}_f$): $R(\varphi)$ is equal to the number of equivalence classes of finite-dimensional irreducible unitary representations fixed by the action ${[\rho]\mapsto[\rho\circ\varphi]}$.
Keywords: Reidemeister number, twisted conjugacy class, Burnside–Frobenius theorem, wreath product.
@article{SEMR_2020_17_a16,
     author = {M. I. Fraiman},
     title = {Twisted {Burnside--Frobenius} theorem and $R_\infty$-property for lamplighter-type groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {890--898},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a16/}
}
TY  - JOUR
AU  - M. I. Fraiman
TI  - Twisted Burnside--Frobenius theorem and $R_\infty$-property for lamplighter-type groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 890
EP  - 898
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a16/
LA  - en
ID  - SEMR_2020_17_a16
ER  - 
%0 Journal Article
%A M. I. Fraiman
%T Twisted Burnside--Frobenius theorem and $R_\infty$-property for lamplighter-type groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 890-898
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a16/
%G en
%F SEMR_2020_17_a16
M. I. Fraiman. Twisted Burnside--Frobenius theorem and $R_\infty$-property for lamplighter-type groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 890-898. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a16/

[1] V. Bardakov, L. Bokut, A. Vesnin, “Twisted conjugacy in free groups and Makanin's question”, Southeast Asian Bull. Math., 29:2 (2005), 209–226 | MR | Zbl

[2] A. Fel'shtyn, Y. Leonov, E. Troitsky, “Twisted conjugacy classes in saturated weakly branch groups”, Geom. Dedicata,, 134 (2008), 61–73 | DOI | MR | Zbl

[3] V. Roman'kov, “Twisted conjugacy classes in nilpotent groups”, J. Pure Appl. Algebra, 215:4 (2011), 664–671 | DOI | MR | Zbl

[4] V. Bardakov, T. Nasybullov, M. Neshchadim, “Twisted conjugacy classes of the unit element”, Sib. Mat. J., 54:1 (2013), 10–21 | DOI | MR | Zbl

[5] D. Gonçalves, P. Wong, “Twisted Conjugacy Classes in Exponential Growth Groups”, Bull. Lond. Math. Soc., 35:2 (2003), 261–268 | DOI | MR | Zbl

[6] K. Dekimpe, D. Gonçalves, “The $R_\infty$ property for free groups, free nilpotent groups and free solvable groups”, Bull. Lond. Math. Soc., 46:4 (2014), 737–746 | DOI | MR | Zbl

[7] A. Fel'shtyn, E. Troitsky, “Aspects of the property $R_\infty$”, J. Group Theory, 18:6 (2015), 1021–1034 | MR | Zbl

[8] A. Fel'shtyn, T. Nasybullov, “The $R_\infty$ and $S_\infty$ properties for linear algebraic groups”, J. Group Theory, 19:5 (2016), 901–921 | MR | Zbl

[9] E. Troitsky, “Reidemeister classes in lamplighter-type groups”, Commun. Algebra, 47:4 (2019), 1731–1741 | DOI | MR | Zbl

[10] A. Fel'shtyn, E. Troitsky, “A twisted Burnside theorem for countable groups and Reidemeister numbers”, Noncommutative Geometry and Number Theory: Where Arithmetic meets Geometry and Physics, eds. C. Consani et al., Vieweg, Wiesbaden, 2006, 141–154 | DOI | MR | Zbl

[11] A. Fel'shtyn, E. Troitsky, “Twisted Burnside–Frobenius theory for discrete groups”, J. Reine Angew. Math., 613 (2007), 193–210 | MR | Zbl

[12] A. Fel'shtyn, N. Luchnikov, E. Troitsky, “Reidemeister classes and twisted inner representations”, Russ. J. Math. Phys., 22:3 (2015), 301–306 | DOI | MR | Zbl

[13] A. Fel'shtyn, Dynamical Zeta Functions, Nielsen theory and Reidemeister torsion, 699, 2000 | Zbl