Twisted Burnside--Frobenius theorem and $R_\infty$-property for lamplighter-type groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 890-898

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the restricted wreath product ${\mathbb{Z}_n \mathrm{wr} \mathbb{Z}^k}$ has the $R_\infty$-property, i. e. every its automorphism $\varphi$ has infinite Reidemeister number $R(\varphi)$, in exactly two cases: (1) for any $k$ and even $n$; (2) for odd $k$ and $n$ divisible by $3$. In the remaining cases there are automorphisms with finite Reidemeister number, for which we prove the finite-dimensional twisted Burnside–Frobenius theorem ($\text{TBFT}_f$): $R(\varphi)$ is equal to the number of equivalence classes of finite-dimensional irreducible unitary representations fixed by the action ${[\rho]\mapsto[\rho\circ\varphi]}$.
Keywords: Reidemeister number, twisted conjugacy class, Burnside–Frobenius theorem, wreath product.
@article{SEMR_2020_17_a16,
     author = {M. I. Fraiman},
     title = {Twisted {Burnside--Frobenius} theorem and $R_\infty$-property for lamplighter-type groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {890--898},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a16/}
}
TY  - JOUR
AU  - M. I. Fraiman
TI  - Twisted Burnside--Frobenius theorem and $R_\infty$-property for lamplighter-type groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 890
EP  - 898
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a16/
LA  - en
ID  - SEMR_2020_17_a16
ER  - 
%0 Journal Article
%A M. I. Fraiman
%T Twisted Burnside--Frobenius theorem and $R_\infty$-property for lamplighter-type groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 890-898
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a16/
%G en
%F SEMR_2020_17_a16
M. I. Fraiman. Twisted Burnside--Frobenius theorem and $R_\infty$-property for lamplighter-type groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 890-898. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a16/