Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a16, author = {M. I. Fraiman}, title = {Twisted {Burnside--Frobenius} theorem and $R_\infty$-property for lamplighter-type groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {890--898}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a16/} }
TY - JOUR AU - M. I. Fraiman TI - Twisted Burnside--Frobenius theorem and $R_\infty$-property for lamplighter-type groups JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 890 EP - 898 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a16/ LA - en ID - SEMR_2020_17_a16 ER -
M. I. Fraiman. Twisted Burnside--Frobenius theorem and $R_\infty$-property for lamplighter-type groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 890-898. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a16/
[1] V. Bardakov, L. Bokut, A. Vesnin, “Twisted conjugacy in free groups and Makanin's question”, Southeast Asian Bull. Math., 29:2 (2005), 209–226 | MR | Zbl
[2] A. Fel'shtyn, Y. Leonov, E. Troitsky, “Twisted conjugacy classes in saturated weakly branch groups”, Geom. Dedicata,, 134 (2008), 61–73 | DOI | MR | Zbl
[3] V. Roman'kov, “Twisted conjugacy classes in nilpotent groups”, J. Pure Appl. Algebra, 215:4 (2011), 664–671 | DOI | MR | Zbl
[4] V. Bardakov, T. Nasybullov, M. Neshchadim, “Twisted conjugacy classes of the unit element”, Sib. Mat. J., 54:1 (2013), 10–21 | DOI | MR | Zbl
[5] D. Gonçalves, P. Wong, “Twisted Conjugacy Classes in Exponential Growth Groups”, Bull. Lond. Math. Soc., 35:2 (2003), 261–268 | DOI | MR | Zbl
[6] K. Dekimpe, D. Gonçalves, “The $R_\infty$ property for free groups, free nilpotent groups and free solvable groups”, Bull. Lond. Math. Soc., 46:4 (2014), 737–746 | DOI | MR | Zbl
[7] A. Fel'shtyn, E. Troitsky, “Aspects of the property $R_\infty$”, J. Group Theory, 18:6 (2015), 1021–1034 | MR | Zbl
[8] A. Fel'shtyn, T. Nasybullov, “The $R_\infty$ and $S_\infty$ properties for linear algebraic groups”, J. Group Theory, 19:5 (2016), 901–921 | MR | Zbl
[9] E. Troitsky, “Reidemeister classes in lamplighter-type groups”, Commun. Algebra, 47:4 (2019), 1731–1741 | DOI | MR | Zbl
[10] A. Fel'shtyn, E. Troitsky, “A twisted Burnside theorem for countable groups and Reidemeister numbers”, Noncommutative Geometry and Number Theory: Where Arithmetic meets Geometry and Physics, eds. C. Consani et al., Vieweg, Wiesbaden, 2006, 141–154 | DOI | MR | Zbl
[11] A. Fel'shtyn, E. Troitsky, “Twisted Burnside–Frobenius theory for discrete groups”, J. Reine Angew. Math., 613 (2007), 193–210 | MR | Zbl
[12] A. Fel'shtyn, N. Luchnikov, E. Troitsky, “Reidemeister classes and twisted inner representations”, Russ. J. Math. Phys., 22:3 (2015), 301–306 | DOI | MR | Zbl
[13] A. Fel'shtyn, Dynamical Zeta Functions, Nielsen theory and Reidemeister torsion, 699, 2000 | Zbl