Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a143, author = {A. I. Parfenov}, title = {Criterion for the {Sobolev} well-posedness of the {Dirichlet} problem for the {Poisson} equation in {Lipschitz} {domains.~I}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {2142--2189}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a143/} }
TY - JOUR AU - A. I. Parfenov TI - Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains.~I JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 2142 EP - 2189 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a143/ LA - ru ID - SEMR_2020_17_a143 ER -
%0 Journal Article %A A. I. Parfenov %T Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains.~I %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 2142-2189 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a143/ %G ru %F SEMR_2020_17_a143
A. I. Parfenov. Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains.~I. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2142-2189. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a143/
[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975 | MR | Zbl
[2] M.S. Agranovich, Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains, Springer, Heidelberg, 2015 ; 2013 | MR | Zbl
[3] H. Aikawa, “Integrability of superharmonic functions and subharmonic functions”, Proc. Amer. Math. Soc., 120:1 (1994), 109–117 | DOI | MR | Zbl
[4] H. Aikawa, “Boundary Harnack principle and Martin boundary for a uniform domain”, J. Math. Soc. Japan, 53:1 (2001), 119–145 | DOI | MR | Zbl
[5] H. Aikawa, “Hölder continuity of the Dirichlet solution for a general domain”, Bull. London Math. Soc., 34:6 (2002), 691–702 | DOI | MR | Zbl
[6] H. Aikawa, “Equivalence between the boundary Harnack principle and the Carleson estimate”, Math. Scand., 103:1 (2008), 61–76 | DOI | MR | Zbl
[7] H. Aikawa, “Potential analysis on nonsmooth domains — Martin boundary and boundary Harnack principle”, Complex analysis and potential theory, CRM Proc. Lect. Notes, 55, eds. A. Boivin et al., 2012, 235–253 | DOI | MR | Zbl
[8] Yu.A. Alkhutov, “$L_p$-estimates of the solution of the Dirichlet problem for second-order elliptic equations”, Sb. Math., 189:1 (1998), 3–20 | DOI | MR | Zbl
[9] Yu.A. Alkhutov, V.A. Kondrat'ev, “Solvability of the Dirichlet problem for second-order elliptic equations in a convex region”, Differ. Equations, 28:5 (1992), 650–662 | MR | Zbl
[10] A. Ancona, “Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien”, Ann. Inst. Fourier, 28:4 (1978), 169–213 | DOI | MR | Zbl
[11] A. Ancona, “On strong barriers and an inequality of Hardy for domains in $\mathbb R^n$”, J. London Math. Soc. (2), 34:2 (1986), 274–290 | DOI | MR | Zbl
[12] P. Auscher, M. Qafsaoui, “Observations on $W^{1,p}$ estimates for divergence elliptic equations with VMO coefficients”, Boll. Unione Mat. Ital. (8), 5-B:2 (2002), 487–509 | MR | Zbl
[13] C. Bandle, R. Benguria, “The Brézis–Nirenberg problem on $\mathbb S^3$”, J. Diff. Equations, 178:1 (2002), 264–279 | DOI | MR | Zbl
[14] H. Berestycki, L. Caffarelli, L. Nirenberg, “Monotonicity for elliptic equations in an unbounded Lipschitz domain”, Comm. Pure Appl. Math., 50:11 (1997), 1089–1112 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[15] K. Bogdan, “Sharp estimates for the Green function in Lipschitz domains”, J. Math. Anal. Appl., 243 (2000), 326–337 | DOI | MR | Zbl
[16] K. Bogdan, T. Kulczycki, A. Nowak, “Gradient estimates for harmonic and $q$-harmonic functions of symmetric stable processes”, Ill. J. Math., 46:2 (2002), 541–556 | MR | Zbl
[17] T.V. Burchuladze, R.V. Rukhadze, “On Green's tensors in elasticity theory”, Differ. Uravn., 10:10 (1974), 1849–1865 (in Russian) | MR | Zbl
[18] S. Byun, L. Wang, “Elliptic equations with BMO coefficients in Reifenberg domains”, Comm. Pure Appl. Math., 57:10 (2004), 1283–1310 | DOI | MR | Zbl
[19] L.A. Caffarelli, “A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are $C^{1,\alpha}$”, Rev. Mat. Iber., 3:2 (1987), 139–162 | DOI | MR | Zbl
[20] L. Caffarelli, E. Fabes, S. Mortola, S. Salsa, “Boundary behavior of nonnegative solutions of elliptic operators in divergence form”, Indiana Univ. Math. J., 30:4 (1981), 621–640 | DOI | MR | Zbl
[21] T. Carleman, “Sur une inégalité différentielle dans la théorie des fonctions analytiques”, C. R. Acad. Sci. Paris, 196 (1933), 995–997 | Zbl
[22] L. Carleson, “On the existence of boundary values for harmonic functions in several variables”, Ark. Mat., 4:5 (1962), 393–399 | DOI | MR | Zbl
[23] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, Orlando, 1984 | MR | Zbl
[24] B.E.J. Dahlberg, “Estimates of harmonic measure”, Arch. Ration. Mech. Anal., 65 (1977), 273–288 | DOI | MR | Zbl
[25] B.E.J. Dahlberg, “$L^q$-estimates for Green potentials in Lipschitz domains”, Math. Scand., 44 (1979), 149–170 | DOI | MR | Zbl
[26] A. Dekkers, A. Rozanova-Pierrat, Dirichlet boundary value problems for linear and nonlinear wave equations on arbitrary and fractal domains, Preprint, 2020, 41 pp.
[27] B. Davey, J. Hill, S. Mayboroda, “Fundamental matrices and Green matrices for non-homogeneous elliptic systems”, Publ. Mat. Barc., 62:2 (2018), 537–614 | DOI | MR | Zbl
[28] G. Dolzmann, S. Müller, “Estimates for Green's matrices of elliptic systems by $L^p$ theory”, Manuscr. Math., 88 (1995), 261–273 | DOI | MR | Zbl
[29] H. Dong, S. Kim, “Green's matrices of second order elliptic systems with measurable coefficients in two dimensional domains”, Trans. Amer. Math. Soc., 361:6 (2009), 3303–3323 | DOI | MR | Zbl
[30] A. Elbert, M.E. Muldoon, “Inequalities and monotonicity properties for zeros of Hermite functions”, Proc. Royal Soc. Edinb. Sec. A, 129:1 (1999), 57–75 | DOI | MR | Zbl
[31] E. Fabes, O. Mendez, M. Mitrea, “Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains”, J. Funct. Anal., 159:2 (1998), 323–368 | DOI | MR | Zbl
[32] G.M. Fichtenholz, Differential and Integral Calculus, v. 2, OGIZ, M., 1948 (in Russian) | MR | Zbl
[33] S. Friedland, W.K. Hayman, “Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions”, Comment. Math. Helv., 51 (1976), 133–161 | DOI | MR | Zbl
[34] S.J. Fromm, “Potential space estimates for Green potentials in convex domains”, Proc. Amer. Math. Soc., 119:1 (1993), 225–233 | DOI | MR | Zbl
[35] F.W. Gehring, “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl
[36] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, 1983 | MR | Zbl
[37] K. Gröger, “A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations”, Math. Ann., 283:4 (1989), 679–687 | DOI | MR | Zbl
[38] M. Grüter, K.-O. Widman, “The Green function for uniformly elliptic equations”, Manuscr. Math., 37:3 (1982), 303–342 | DOI | MR | Zbl
[39] K. Haliste, “Estimates of harmonic measures”, Ark. Mat., 6:1 (1965), 1–31 | DOI | MR | Zbl
[40] W.K. Hayman, P.B. Kennedy, Subharmonic Functions, v. 1, Academic Press, London, 1976 ; 1980 | MR | Zbl
[41] W.K. Hayman, Subharmonic Functions, v. 2, Academic Press, London etc., 1989 | MR | Zbl
[42] W.K. Hayman, E.L. Ortiz, “An upper bound for the largest zero of Hermite's function with applications to subharmonic functions”, Proc. Royal Soc. Edinb. Sec. A, 75 (1976), 183–197 | DOI | MR | Zbl
[43] L.L. Helms, Introduction to Potential Theory, Wiley, New York, 1969 | MR | Zbl
[44] S. Hofmann, M. Mitrea, M. Taylor, “Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains”, Int. Math. Res. Not., 2010:14 (2010), 2567–2865 | MR | Zbl
[45] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Springer, Berlin, 1983 ; 1986 | MR | Zbl
[46] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. II, Differential Operators with Constant Coefficients, Springer, Berlin, 1983 ; 1986 | MR | Zbl
[47] A. Huber, “Über Wachstumseigenschaften gewisser Klassen von subharmonischen Funktionen”, Comment. Math. Helv., 26:2 (1952), 81–116 | DOI | MR | Zbl
[48] R.A. Hunt, R.L. Wheeden, “Positive harmonic functions on Lipschitz domains”, Trans. Amer. Math. Soc., 147:2 (1970), 507–527 | DOI | MR | Zbl
[49] T. Iwaniec, “The Gehring lemma”, Quasiconformal mappings and analysis, eds. P. Duren et al., Springer, New York, 1998, 181–204 | DOI | MR | Zbl
[50] D.S. Jerison, C.E. Kenig, “An identity with applications to harmonic measure”, Bull. Amer. Math. Soc. New Ser., 2:3 (1980), 447–451 | DOI | MR | Zbl
[51] D. Jerison, C.E. Kenig, “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 161–219 | DOI | MR | Zbl
[52] N.J. Kalton, I.E. Verbitsky, “Nonlinear equations and weighted norm inequalities”, Trans. Amer. Math. Soc., 351:9 (1999), 3441–3497 | DOI | MR | Zbl
[53] V.A. Kozlov, V.G. Maz'ya, J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, AMS, Providence, 1997 | MR | Zbl
[54] V.A. Kozlov, V.G. Maz'ya, J. Rossmann, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations, AMS, Providence, 2001 | MR | Zbl
[55] G.A. Kuznetsov, “On the number of solutions for the biharmonic equation in domains with angular points in Sobolev spaces”, Vestn. ChelGU, 3 (1996), 69–77 (in Russian) | MR
[57] V.N. Maslennikova, M.E. Bogovskii, “Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries”, Rend. Semin. Mat. Fis. Milano, 56 (1986), 125–138 | DOI | MR | Zbl
[58] V.N. Maslennikova, M.E. Bogovskii, “On non-closure of range of values of elliptic operator for a plane angle”, Ann. Univ. Ferrara Sez. VII Sc. Mat., 39 (1993), 65–75 | MR | Zbl
[59] V.G. Maz'ya, “Index of the closure of the operator of the Dirichlet problem in a domain with an irregular boundary”, J. Sov. Math., 10 (1978), 886–908 ; (1975) | DOI | Zbl
[60] V. Maz'ya, M. Mitrea, T. Shaposhnikova, “The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients”, J. Anal. Math., 110 (2010), 167–239 | DOI | MR | Zbl
[61] V.G. Maz'ya, S.A. Nazarov, B.A. Plamenevskii, “On singularities of solutions of the Dirichlet problem in the exterior of a thin cone”, Mat. Sb. New Ser., 122(164):4(12) (1983), 435–457 (in Russian) | MR | Zbl
[62] V.G. Maz'ya, B.A. Plamenevskii, “Estimates in $L_p$ and in Hölder classes and the Miranda–Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary”, Amer. Math. Soc. Transl. (2), 123 (1984), 1–56 ; (1978) | Zbl
[63] V.G. Maz'ya, B.A. Plamenevskii, “Weighted spaces with nonhomogeneous norms and boundary value problems in domains with conical points”, Amer. Math. Soc. Transl. (2), 123 (1984), 89–107 ; (1978) | Zbl
[64] V.G. Maz'ya, T.O. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, Pitman, Boston, 1985 ; 1986 | MR | Zbl
[65] V.G. Maz'ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators, Springer, Berlin, 2009 | MR | Zbl
[66] K. Miller, “Extremal barriers on cones with Phragmén–Lindelöf theorems and other applications”, Ann. Mat. Pura Appl. IV Ser., 90 (1971), 297–329 | DOI | MR | Zbl
[67] D. Mitrea, I. Mitrea, “On the regularity of Green functions in Lipschitz domains”, Comm. Partial Diff. Equations, 36 (2011), 304–327 | DOI | MR | Zbl
[68] D. Mitrea, M. Mitrea, L. Yan, “Boundary value problems for the Laplacian in convex and semiconvex domains”, J. Funct. Anal., 258 (2010), 2507–2585 | DOI | MR | Zbl
[70] K. Nyström, “Integrability of Green potentials in fractal domains”, Ark. Mat., 34:2 (1996), 335–381 | DOI | MR | Zbl
[71] A.I. Parfenov, “Weighted a priori estimate in straightenable domains of local Lyapunov-Dini type”, Siberian Electronic Mathematical Reports, 9 (2012), 65–150 (in Russian) | MR | Zbl
[72] A.I. Parfenov, “Error bound for a generalized M. A. Lavrentiev's formula via the norm of a fractional Sobolev space”, Siberian Electronic Mathematical Reports, 10 (2013), 335–377 (in Russian) | MR | Zbl
[73] A.I. Parfenov, “Discrete Hölder estimates for a certain kind of parametrix. II”, Ufa Math. J., 9:2 (2017), 62–91 | DOI | MR | Zbl
[74] P.J. Rippon, “A generalisation of Widman's theorem on comparison domains for harmonic measures”, Ark. Mat., 17 (1979), 39–50 | DOI | MR | Zbl
[75] Z. Shen, “Bounds of Riesz transforms on $L^p$ spaces for second order elliptic operators”, Ann. Inst. Fourier, 55:1 (2005), 173–197 | DOI | MR | Zbl
[76] Z. Shen, Weighted $L^2$ estimates for elliptic homogenization in Lipschitz domains, Preprint, 2020, 26 pp.
[77] C.G. Simader, On Dirichlet's Boundary Value Problem. An $L^p$-Theory Based on a Generalization of Gårding's Inequality, Springer, Berlin, 1972 | MR | Zbl
[78] A.A. Solov'ev, “On the index of an operator for the Dirichlet problem in a domain with either piecewise-smooth or Radon boundaries”, Sov. Math., 35:11 (1991), 61–66 | Zbl
[79] E. Sperner jr., “Zur Symmetrisierung von Funktionen auf Sphären”, Math. Z., 134 (1973), 317–327 | DOI | MR | Zbl
[80] T. Sugawa, “Various domain constants related to uniform perfectness”, Complex Variables Th. Appl., 36:4 (1998), 311–345 | DOI | MR | Zbl
[81] T. Sugawa, On boundary regularity of the Dirichlet problem for plane domains, 1999, 37 pp. http://www.cajpn.org/pp99/9904.pdf
[82] G. Sweers, “Positivity for a strongly coupled elliptic system by Green function estimates”, J. Geom. Anal., 4:1 (1994), 121–142 | DOI | MR | Zbl
[83] J.H. Wells, L.R. Williams, Embeddings and Extensions in Analysis, Springer, Berlin, 1975 | MR | Zbl
[84] I. Wood, “Maximal $L^p$-regularity for the Laplacian on Lipschitz domains”, Math. Z., 255 (2007), 855–875 | DOI | MR | Zbl
[85] J.-M.G. Wu, “Comparison of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains”, Ann. Inst. Fourier, 28:4 (1978), 147–167 | DOI | MR | Zbl
[86] K. Yosida, Functional Analysis, 6th ed., Springer, Berlin, 1980 | MR | Zbl