Efficient computation of Favard constants and their connection to Euler polynomials and numbers
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1921-1942

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss problems of calculating the Favard constants, which are often used in approximation theory and their connection to Euler numbers and polynomials. Simple effective recurrence formulas for computation of the Favard constants are found. The application of the results to one problem of extremal functional interpolation allowing the solution to be expressed in an explicit form is demonstrated.
Keywords: Euler numbers, recurrence formulas, approximation theory.
Mots-clés : Favard constants, Euler polynomials
@article{SEMR_2020_17_a142,
     author = {Yu. S. Volkov},
     title = {Efficient computation of {Favard} constants and their connection to {Euler} polynomials and numbers},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1921--1942},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a142/}
}
TY  - JOUR
AU  - Yu. S. Volkov
TI  - Efficient computation of Favard constants and their connection to Euler polynomials and numbers
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1921
EP  - 1942
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a142/
LA  - en
ID  - SEMR_2020_17_a142
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%T Efficient computation of Favard constants and their connection to Euler polynomials and numbers
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1921-1942
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a142/
%G en
%F SEMR_2020_17_a142
Yu. S. Volkov. Efficient computation of Favard constants and their connection to Euler polynomials and numbers. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1921-1942. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a142/