Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a142, author = {Yu. S. Volkov}, title = {Efficient computation of {Favard} constants and their connection to {Euler} polynomials and numbers}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1921--1942}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a142/} }
TY - JOUR AU - Yu. S. Volkov TI - Efficient computation of Favard constants and their connection to Euler polynomials and numbers JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1921 EP - 1942 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a142/ LA - en ID - SEMR_2020_17_a142 ER -
%0 Journal Article %A Yu. S. Volkov %T Efficient computation of Favard constants and their connection to Euler polynomials and numbers %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1921-1942 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a142/ %G en %F SEMR_2020_17_a142
Yu. S. Volkov. Efficient computation of Favard constants and their connection to Euler polynomials and numbers. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1921-1942. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a142/
[1] N. Korneichuk, Exact constants in approximation theory, Cambridge University Press, Cambridge, 1991 | MR | Zbl
[2] V.M. Tikhomirov, “Approximation theory”, Analysis, v. II, Encycl. Math. Sci., 14, Convex analysis and approximation theory, Springer, Berlin–Heidelberg, 1990, 93–255 | Zbl
[3] R.A. DeVore, G.G. Lorentz, Constructive approximation, Springer, Berlin, 1993 | MR | Zbl
[4] I.J. Schoenberg, “Cardinal interpolation and spline functions”, J. Approx. Theory, 2:2 (1969), 167–206 | DOI | MR | Zbl
[5] I.J. Schoenberg, “Cardinal interpolation and spline functions: II interpolation of data of power growth”, J. Approx. Theory, 6:4 (1972), 404–420 | DOI | MR | Zbl
[6] A.S. Cavaretta Jr., “On cardinal perfect splines of least sup-norm on the real axis”, J. Approx. Theory, 8:4 (1973), 285–303 | DOI | MR | Zbl
[7] G. Glaeser, “Prolongement extremal de fonctions différentiables”, J. Approx. Theory, 8:3 (1973), 249–261 | DOI | MR | Zbl
[8] J. Favard, “Sur les meilleurs procédés d'approximation de certaines classes des fonctions par des polynomes trigonométriques”, Bull. Sci. Math., II. Ser., 61 (1937), 209–224 ; 243–256 | MR | Zbl
[9] N.I. Akhiezer, M.G. Krein, “On the best approximation of periodic functions”, Dokl. Akad. Nauk SSSR, 15:3 (1937), 107–111 | Zbl
[10] Yu.N. Subbotin, “Norms of interpolational splines of odd degree in the spaces $W_2^k$”, Math. Notes, 44:6 (1988), 958–962 | DOI | MR | Zbl
[11] V.V. Zhuk, S.Yu. Pimenov, “On norms of Akhiezer-Krein-Favard sums”, Vestnik St. Peterburg Univ., Prikl. Math. Inf. Pros. Upravl., 2006:4, 37–47 | MR
[12] A.N. Kolmogorov, “On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval”, Amer. Math. Soc. Transl., 1949, no. 2 | MR
[13] Yu.S. Volkov, Yu.N. Subbotin, “Fifty years of Schoenberg's problem on the convergence of spline interpolation”, Proc. Steklov Inst. Math., 288, suppl. 1 (2015), S222–S237 | DOI | MR | Zbl
[14] Yu.S. Volkov, “On one problem of extremal functional interpolation and Favard constants”, Dokl. Math., 102:3 (2020) | DOI
[15] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher transcendental functions, v. 1, McGraw-Hill, New York, 1953 | Zbl
[16] A.P. Prudnikov, A.Yu. Brychkov, O.L. Marichev, Integrals and series, v. 1, Elementary functions, Gordon Breach Science Publishers, New York etc., 1986 | MR | Zbl
[17] K. Dilcher, “Bernoulli and Euler polynomials”, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, 2010, 587–599 | MR
[18] M. Abramovitz, I.A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards, John Wiley Sons, New York etc, 1972 | MR | Zbl
[19] A.I. Stepanets, Methods of Approximation Theory, VSP, Utrecht, 2005 | MR | Zbl
[20] V.L. Miroshnichenko, “On exact estimates of approximation by interpolation splines”, Siberian conf. «Methods of spline functions», Abstracts, Sobolev Inst. Math., 2001, 55–56
[21] N.E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924 | Zbl
[22] A.F. Horadam, “Genocchi polynomials”, Applications of Fibonacci numbers, v. 4, Kluwer, Dordrecht, 1990, 145–166 | MR | Zbl
[23] M.K. Kerimov, “The Rayleigh function: Theory and methods for its calculation”, Comput. Math. Math. Phys., 39:12 (1999), 1883–1925 | MR | Zbl
[24] S.G. Gocheva-Ilieva, I.H. Feschiev, “New recursive representations for the Favard constants with application to multiple singular integrals and summation of series”, Abstr. Appl. Anal., 2013, 523618 | MR | Zbl
[25] A.G. Kuznetsov, I.M. Pak, A.E. Postnikov, “Increasing trees and alternating permutations”, Russ. Math. Surv., 49:6 (1994), 79–114 | DOI | MR | Zbl
[26] R. Adin, Y. Roichman, “Standard Young tableaux”, Handbook of Enumerative Combinatorics, ed. M. Bóna, CRC Press, Boca Raton, 2015, 895–974 | MR | Zbl
[27] V.I. Arnold, “Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics”, Duke Math. J., 63:2 (1991), 537–555 | DOI | MR | Zbl
[28] https://oeis.org/
[29] L. Comtet, Advanced combinatorics: The art of finite and infinite expansions, D. Reidel Publishing Company, Dordrecht, 1974 | MR | Zbl
[30] I.J. Schoenberg, Cardinal spline interpolation, SIAM, Philadelphia, 1973 | MR | Zbl
[31] G.V. Demidenko, V.L. Vaskevich (eds.), Selected Works of S.L. Sobolev, v. I, Equations of mathematical physics, computational mathematics, and cubature formulas, Springer, New York, 2006 | MR | Zbl
[32] S.B. Stechkin, Yu.N. Subbotin, Splines in numerical mathematics, Nauka, M., 1976 | MR | Zbl
[33] Yu.N. Subbotin, “Interpolation by functions with $n$th derivative of minimum norm”, Proc. Steklov Inst. Math., 88 (1967), 31–63 | Zbl
[34] Yu.N. Subbotin, “Approximation by spline functions and estimates of diameters”, Proc. Steklov Inst. Math., 109 (1971), 39–67 | MR | Zbl
[35] Yu.N. Subbotin, “Extremal problems of functional interpolation and interpolation-in-the-mean splines”, Proc. Steklov Inst. Math., 138 (1977), 127–185 | MR | Zbl
[36] E.V. Mishchenko, “Determination of Riesz bounds for the spline basis with the help of trigonometric polynomials”, Sib. Math. J., 51:4 (2010), 660–666 | DOI | MR | Zbl
[37] E.V. Mishchenko, “Construction of polynomials of a special kind and examples of their application in the theory of power series and in the wavelet theory”, Russian Math., 55:1 (2011), 19–32 | DOI | MR | Zbl
[38] Yu.N. Subbotin, S.I. Novikov, V.T. Shevaldin, “Extremal function interpolation and splines”, Tr. Inst. Mat. Mekh. UrO RAN, 24, no. 3, 2018, 200–225 | MR
[39] Yu.N. Subbotin, “On the relations between finite differences and the corresponding derivatives”, Proc. Steklov Inst. Math., 78 (1965), 24–42 | MR | Zbl
[40] J. Favard, “Sur l'interpolation”, J. Math. Pures Appl., 19:3 (1940), 281–306 | MR | Zbl
[41] C. de Boor, “A smooth and local interpolant with small $k$-th derivative”, Numeri. Solut. Bound. Value Probl. ordin. differ. Equat., Proc. Symp. (Baltimore, 1974), Academic Press, New York, 1975, 177–197 | MR | Zbl
[42] C. de Boor, How small can one make the derivatives of an interpolating function?, J. Approx. Theory, 13:2 (1975), 105–116 | DOI | MR | Zbl
[43] C. de Boor, “On 'best' interpolation”, J. Approx. Theory, 16:1 (1976), 28–42 | DOI | MR | Zbl
[44] H.-O. Kreiss, “Difference approximations for singular perturbation problems”, Numer. Solut. Bound. Value Probl. ordin. differ. Equat., Proc. Symp. (Baltimore, 1974), Academic Press, New York, 1975, 199–211 | MR | Zbl
[45] C. de Boor, “The exact condition of the B-spline basis may be hard to determine”, J. Approx. Theory, 60:3 (1990), 344–359 | DOI | MR | Zbl
[46] K. Scherer, A.Yu. Shadrin, “New upper bound for the B-spline basis condition number II. A proof of de Boor's $2^k$-conjecture”, J. Approx. Theory, 99:2 (1999), 217–229 | DOI | MR | Zbl
[47] T. Lyche, “A note on the condition numbers of the B-spline bases”, J. Approx. Theory, 22:3 (1978), 202–205 | DOI | MR | Zbl
[48] S.I. Novikov, V.T. Shevaldin, “On the connection between the second divided difference and the second derivative”, Tr. Inst. Mat. Mekh. UrO RAN, 26, no. 2, 2020, 216–224 | MR
[49] J. Liu, H. Pan, Y. Zhang, “On the integral of the product of the Appell polynomials”, Integral Transforms Spec. Funct., 25:9 (2014), 680–685 | DOI | MR | Zbl
[50] F. Qi, “A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers”, J. Comput. Appl. Math., 351 (2019), 1–5 | MR | Zbl