The modulus of a family of curves on an abstract surface over a spherical ring
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1816-1822.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a two-sided estimate for the modulus of the family of all locally rectifiable curves joining two concentric spheres on a so-called abstract surface. The last notion means that, for a given curve and a point on it, the length element of the curve at this point depends on the direction of movement along the curve; in addition, the volume element is generated by some weight function.
Keywords: abstract surface, modulus of a family of curves, spherical ring.
@article{SEMR_2020_17_a141,
     author = {M. V. Tryamkin},
     title = {The modulus of a family of curves on an abstract surface over a spherical ring},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1816--1822},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a141/}
}
TY  - JOUR
AU  - M. V. Tryamkin
TI  - The modulus of a family of curves on an abstract surface over a spherical ring
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1816
EP  - 1822
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a141/
LA  - en
ID  - SEMR_2020_17_a141
ER  - 
%0 Journal Article
%A M. V. Tryamkin
%T The modulus of a family of curves on an abstract surface over a spherical ring
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1816-1822
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a141/
%G en
%F SEMR_2020_17_a141
M. V. Tryamkin. The modulus of a family of curves on an abstract surface over a spherical ring. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1816-1822. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a141/

[1] V.M. Miklyukov, Conformal Mapping of Irregular Surfaces and Their Applications, Volgograd. Gos. Univ., Volgograd, 2005 (in Russian)

[2] V.M. Miklyukov, Geometric Analysis. Differential Forms, Almost-Solutions, Almost Quasiconformal Mappings, Volgograd. Gos. Univ., Volgograd, 2007 (in Russian)

[3] V.M. Miklyukov, Functions of Sobolev Weight Classes, Anisotropic Metrics, and Degenerating Quasiconformal Mappings, Volgograd. Gos. Univ., Volgograd, 2010 (in Russian)

[4] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, W. H. Freeman and Co., San Francisco, Calif., 1973 | MR

[5] S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford University Press, Oxford, 1998 | MR | Zbl

[6] M.V. Tryamkin, “An Estimate of the Modulus of a Family of Curves on an Abstract Surface over a Cylinder”, Math. Notes, 107:1 (2020), 177–181 | DOI | MR | Zbl

[7] M.V. Tryamkin, “Modulus Estimates on Abstract Surfaces over a Domain of Revolution and a Cylindrical Ring”, Math. Notes, 108:2 (2020), 297–301 | DOI | MR | Zbl

[8] Yu.V. Dymchenko, “Equality of the capacity and modulus of a condenser in Finsler spaces”, Math. Notes, 85:4 (2009), 566–573 | DOI | MR | Zbl

[9] Yu.V. Dymchenko, “Equality of the capacity and module of a condenser in a sub-Finsler space”, J. Math. Sci. (N.Y.), 225:6 (2017), 883–892 | DOI | MR | Zbl

[10] F.W. Gehring, G.J. Martin, B.P. Palka, An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings, Math. Surveys Monogr., 216, Amer. Math. Soc., Providence, RI, 2017 | DOI | MR | Zbl