Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a141, author = {M. V. Tryamkin}, title = {The modulus of a family of curves on an abstract surface over a spherical ring}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1816--1822}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a141/} }
TY - JOUR AU - M. V. Tryamkin TI - The modulus of a family of curves on an abstract surface over a spherical ring JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1816 EP - 1822 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a141/ LA - en ID - SEMR_2020_17_a141 ER -
M. V. Tryamkin. The modulus of a family of curves on an abstract surface over a spherical ring. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1816-1822. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a141/
[1] V.M. Miklyukov, Conformal Mapping of Irregular Surfaces and Their Applications, Volgograd. Gos. Univ., Volgograd, 2005 (in Russian)
[2] V.M. Miklyukov, Geometric Analysis. Differential Forms, Almost-Solutions, Almost Quasiconformal Mappings, Volgograd. Gos. Univ., Volgograd, 2007 (in Russian)
[3] V.M. Miklyukov, Functions of Sobolev Weight Classes, Anisotropic Metrics, and Degenerating Quasiconformal Mappings, Volgograd. Gos. Univ., Volgograd, 2010 (in Russian)
[4] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, W. H. Freeman and Co., San Francisco, Calif., 1973 | MR
[5] S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford University Press, Oxford, 1998 | MR | Zbl
[6] M.V. Tryamkin, “An Estimate of the Modulus of a Family of Curves on an Abstract Surface over a Cylinder”, Math. Notes, 107:1 (2020), 177–181 | DOI | MR | Zbl
[7] M.V. Tryamkin, “Modulus Estimates on Abstract Surfaces over a Domain of Revolution and a Cylindrical Ring”, Math. Notes, 108:2 (2020), 297–301 | DOI | MR | Zbl
[8] Yu.V. Dymchenko, “Equality of the capacity and modulus of a condenser in Finsler spaces”, Math. Notes, 85:4 (2009), 566–573 | DOI | MR | Zbl
[9] Yu.V. Dymchenko, “Equality of the capacity and module of a condenser in a sub-Finsler space”, J. Math. Sci. (N.Y.), 225:6 (2017), 883–892 | DOI | MR | Zbl
[10] F.W. Gehring, G.J. Martin, B.P. Palka, An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings, Math. Surveys Monogr., 216, Amer. Math. Soc., Providence, RI, 2017 | DOI | MR | Zbl