Weighted Sobolev spaces, capacities and exceptional sets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1552-1570

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the weighted Sobolev space $W^{m,p}_\omega (\Omega)$, where $\Omega$ is an open subset of $R^n$, $n\ge2$, and $\omega$ is a Muckenhoupt $A_p$-weight on $R^n$, $1\le p\infty$, $m\in\mathbb N$. For the equalities $W^{m,p}_\omega (\Omega\setminus E)=W^{m,p}_\omega(\Omega)$, $W^{m,p}_\omega(\Omega\setminus E)=W^{m,p}_\omega(\Omega)$ to hold, conditions are obtained in terms of $E$ as a set of zero $(p,m,\omega)$-capacity, or an $NC_{p,\omega}$-set for the first equality. For the equality $W^{m,p}(\Omega)=W^{m,p}(\Omega)$, the conditions are established for $R^n \setminus\Omega$ as a set of zero $(p,m,\omega)$-capacity. Similar results are partially true for $W^m_{p,\omega}(\Omega)$, $L^m_{p,\omega}(\Omega)$.
Keywords: Sobolev space, capacity, Muckenhoupt weight, exceptional set.
@article{SEMR_2020_17_a140,
     author = {I. M. Tarasova and V. A. Shlyk},
     title = {Weighted {Sobolev} spaces, capacities and exceptional sets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1552--1570},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a140/}
}
TY  - JOUR
AU  - I. M. Tarasova
AU  - V. A. Shlyk
TI  - Weighted Sobolev spaces, capacities and exceptional sets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1552
EP  - 1570
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a140/
LA  - en
ID  - SEMR_2020_17_a140
ER  - 
%0 Journal Article
%A I. M. Tarasova
%A V. A. Shlyk
%T Weighted Sobolev spaces, capacities and exceptional sets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1552-1570
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a140/
%G en
%F SEMR_2020_17_a140
I. M. Tarasova; V. A. Shlyk. Weighted Sobolev spaces, capacities and exceptional sets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1552-1570. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a140/