Weighted Sobolev spaces, capacities and exceptional sets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1552-1570.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the weighted Sobolev space $W^{m,p}_\omega (\Omega)$, where $\Omega$ is an open subset of $R^n$, $n\ge2$, and $\omega$ is a Muckenhoupt $A_p$-weight on $R^n$, $1\le p\infty$, $m\in\mathbb N$. For the equalities $W^{m,p}_\omega (\Omega\setminus E)=W^{m,p}_\omega(\Omega)$, $W^{m,p}_\omega(\Omega\setminus E)=W^{m,p}_\omega(\Omega)$ to hold, conditions are obtained in terms of $E$ as a set of zero $(p,m,\omega)$-capacity, or an $NC_{p,\omega}$-set for the first equality. For the equality $W^{m,p}(\Omega)=W^{m,p}(\Omega)$, the conditions are established for $R^n \setminus\Omega$ as a set of zero $(p,m,\omega)$-capacity. Similar results are partially true for $W^m_{p,\omega}(\Omega)$, $L^m_{p,\omega}(\Omega)$.
Keywords: Sobolev space, capacity, Muckenhoupt weight, exceptional set.
@article{SEMR_2020_17_a140,
     author = {I. M. Tarasova and V. A. Shlyk},
     title = {Weighted {Sobolev} spaces, capacities and exceptional sets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1552--1570},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a140/}
}
TY  - JOUR
AU  - I. M. Tarasova
AU  - V. A. Shlyk
TI  - Weighted Sobolev spaces, capacities and exceptional sets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1552
EP  - 1570
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a140/
LA  - en
ID  - SEMR_2020_17_a140
ER  - 
%0 Journal Article
%A I. M. Tarasova
%A V. A. Shlyk
%T Weighted Sobolev spaces, capacities and exceptional sets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1552-1570
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a140/
%G en
%F SEMR_2020_17_a140
I. M. Tarasova; V. A. Shlyk. Weighted Sobolev spaces, capacities and exceptional sets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1552-1570. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a140/

[1] R. Adams, J. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, Academic Press, New York, 2003 | MR | Zbl

[2] H. Aikawa, M. Ohtsuka, “Extremal lenth of vector measures”, Ann. Acad. Sci. Fenn., Math., A, 24:1 (1999), 61–88 | MR | Zbl

[3] S.-K. Chua, “Extension theorems on weighted Sobolev spaces”, Indiana Univ. Math. J., 41:4 (1992), 1027–1076 | DOI | MR | Zbl

[4] I.N. Demshin, Y.V. Dymchenko, V.A. Shlyk, “Null-sets criteria for weighed Sobolev spaces”, J. Math. Sci., 118:1 (2003), 4760–4777 | DOI | MR | Zbl

[5] Y.V. Dymchenko, V.A. Shlyk, “Sufficiency of broken lines in the modulus method and removable sets”, Sib. Math. J., 51:6 (2010), 1028–1042 | DOI | MR | Zbl

[6] M. de Guzmán, Differentiation of integrals in $R^n$, Lecture Notes in Mathematics, 481, Springer, Berlin, etc., 1975 | MR | Zbl

[7] L.I. Hedberg, “Removable sungularities and condenser capacities”, Ark. Mat., 12:1 (1974), 181–201 | DOI | MR | Zbl

[8] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Mineola, 2006 | MR | Zbl

[9] E. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, 14, AMS, Providence, 2001 | DOI | MR | Zbl

[10] V.G. Mazya, Sobolev spaces, Springer-Verlag, Berlin etc, 1985 | MR | Zbl

[11] B. Muckenhoupt, “Weighted norm unequalities for the Hardy maximal functions”, Trans. Am. Math. Soc., 192 (1972), 207–226 | DOI | MR | Zbl

[12] M. Ohtsuka, Extremal length and precise functions, GAKUTO international series. Mathematical Sciences and Applications, 19, Gakkotosho, Tokyo, 2003 | MR | Zbl

[13] Yu. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical Monographs, 73, AMS, Providence, 1989 | DOI | MR | Zbl

[14] B.O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes in Mathematics, 1736, Springer, Berlin, 2000 | DOI | MR | Zbl

[15] S.K. Vodop'yanov, V.M. Gol'dshtein, “Criteria for the removability of sets in spaces of $L_p^1$ quasiconformal and quasi-isometric mappings”, Sib. Math. J., 18:1 (1977), 35–50 | DOI | Zbl