On the complexity of the lattices of subvarieties and congruences. II. Differential groupoids and unary algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 753-768.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that certain lattices can be represented as the lattices of relative subvarieties and relative congruences of differential groupoids and unary algebras. This representation result implies that there are continuum many quasivarieties of differential groupoids such that the sets of isomorphism types of finite sublattices of their lattices of relative subvarieties and congruences are not computable. A similar result is obtained for unary algebras and their lattices of relative congruences.
Keywords: quasivariety, variety, congruence lattice, differential groupoid, unary algebra, undecidable problem, computable set.
@article{SEMR_2020_17_a14,
     author = {A. V. Kravchenko and M. V. Schwidefsky},
     title = {On the complexity of the lattices of subvarieties and congruences. {II.} {Differential} groupoids and unary algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {753--768},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a14/}
}
TY  - JOUR
AU  - A. V. Kravchenko
AU  - M. V. Schwidefsky
TI  - On the complexity of the lattices of subvarieties and congruences. II. Differential groupoids and unary algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 753
EP  - 768
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a14/
LA  - en
ID  - SEMR_2020_17_a14
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%A M. V. Schwidefsky
%T On the complexity of the lattices of subvarieties and congruences. II. Differential groupoids and unary algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 753-768
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a14/
%G en
%F SEMR_2020_17_a14
A. V. Kravchenko; M. V. Schwidefsky. On the complexity of the lattices of subvarieties and congruences. II. Differential groupoids and unary algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 753-768. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a14/

[1] A. Basheyeva, A.M. Nurakunov, M.V. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses. III”, Sib. Electron. Math. Lzv., 14 (2017), 252–263 | MR | Zbl

[2] G. Birkhoff, “Universal algebra”, Proceedings of the First Canadian Mathematical Congress (Montreal, 1945), Univ. of Toronto Press, Toronto, 1946, 310–326 | MR | Zbl

[3] V.A. Gorbunov, Algebraic Theory of Quasivarieties, Plenum, New York, 1998 | MR | Zbl

[4] V.A. Gorbunov, V.I. Tumanov, “The Structure of lattices of quasivarieties”, Tr. Inst. Mat., 2 (1982), 12–44 | MR | Zbl

[5] A.V. Kravchenko, “Complexity of quasivariety lattices for varieties of unary algebras”, Sib. Adv. Math., 12:1 (2001), 63–76 | MR | Zbl

[6] A.V. Kravchenko, “On the lattices of quasivarieties of differential groupoids”, Comment. Math. Univ. Caro., 49:1 (2008), 11–17 | MR | Zbl

[7] A.V. Kravchenko, “Complexity of quasivariety lattices for varieties of unary algebras. II”, Sib. Electron. Mat. Izv., 13 (2016), 388–394 | MR | Zbl

[8] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, “Quasi-equational bases of differential groupoids and unary algebras”, Sib. Electron. Mat. Izv., 14 (2017), 1330–1337 | MR | Zbl

[9] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, “Structure of quasivariety lattices. I: Independent axiomatizability”, Algebra Logic, 57:6 (2019), 445–462 | DOI | Zbl

[10] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, “Structure of quasivariety lattices. II: Undecidable problems”, Algebra Logic, 58:2 (2019), 123–136 | DOI | Zbl

[11] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, “On representation of finite lattices”, Algebra Universalis, 80:15 (2019) | MR | Zbl

[12] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, On the complexity of the lattices of subvarieties and congruences, Int. J. Algebra Comput., 2019 (to appear) | MR

[13] A.I. Maltsev, “Some questions bordering on algebra and mathematical logic”, Tr. Mezhdunarod. Kongr. Mat. (Moskva 1966), Mir, M., 1968, 217–231 | Zbl

[14] A.M. Nurakunov, “Unreasonable lattices of quasivarieties”, Int. J. Algebra Comput., 22:3 (2012), 1–17 | DOI | MR | Zbl

[15] A.M. Nurakunov, “Lattices of quasivarieties of pointed Abelian groups”, Algebra Logic, 53:3 (2014), 238–257 | DOI | MR | Zbl

[16] A.M. Nurakunov, M.V. Semenova, A. Zamojska-Dzienio, “On lattices connected with various types of classes of algebraic structures”, Memoirs of the Kazan University. Physical and Mathematical Sciences Series, 154 (2012), 167–179 | MR

[17] A. Romanowska, B. Roszkowska, “On some groupoid modes”, Demonstr. Math., 20:1-2 (1987), 277–290 | MR | Zbl

[18] A.B. Romanowska, J.D.H. Smith, Modes, World Scientific, Singapore, 2002 | MR | Zbl

[19] M.V. Schwidefsky, “On complexity of quasivariety lattices”, Algebra Logic, 54:3 (2015), 245–257 | DOI | MR | Zbl

[20] M. V. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses”, Sib. Mat. J., 53:5 (2012), 889–905 | DOI | MR | Zbl

[21] M. V. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses. II”, Int. J. Algebra Comput., 24:8 (2014), 1099–1126 | DOI | MR | Zbl